

SANDIP FOUNDATION'S

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE MAHIRAVANI, TRIMBAK ROAD, TAL & DIST: NASHIK-422213, MAHARASHTRA,INDIA B. Tech Mechanical Engineering

Semester – III

				Teaching Scheme (Hrs./Week)Examination Scheme								
Sr. No.	Course Type	Course Code	Course Name	L	Т	Р	С		FormativeSummaAssessmentAssessmCIAESE		ment	Total Marks
								Theory	Lab	Theory	Lab	
1	PC	2312201	Applied Thermodynamics	3			3	50		50		100
2	PC	2312202	Strength of Materials	3			3	50		50		100
3	PC	2312203	Manufacturing Processes	2			2	25		50		75
4	PC	2312204	Strength of Materials Lab			2	1		25		25 ^a	50
5	PC	2312205	Applied Thermodynamics lab			2	1				25 ^a	25
6	OE	2312206	Open Elective-I	3			3	50		50		100
7	IC (HSSM)	2300201	Principles of Managements	2			2	25		50		75
8	IC (VEC)	2300202	Industrial Psychology	2			2	25		50		75
9	IC (MD)	2300203	Multidisciplinary –Design Thinking	1		2	2		25	25	25 ^a	75
10	IC (CEP)	2300204	Community Engagement Project			4	2		25		25 ^a	50
11	SDC	2312701	IC Engine Maintenance			2						
12	EEC	2312801	Welding Technology									
		ТС	DTAL	16	00	12	21	225	75	325	100	725
			Open E	lectiv	ve I							
7	OE	2312206A	Sustainable & Green Energy	3			3	50		50		100
7	OE	2312206B	Production Processes	3			3	50		50		100
			Value Ad	lded	Cour	·se			_			
13	VAC	VAC121	Solid Modeling & Drafting	-		2	1		25			25

2312201: Applied Thermodynamics

Teaching Scheme:	Credits	Examinati	on Scheme
Theory: 3 hrs/week	Th:03	Theory	CIA: 50
Practical:	Practical:	Theory	End-Sem:50
Prerequisite : Nil		Pract:	
		Oral:	
		Termwork	

Course Objectives:

- 1. To understand laws of thermodynamics.
- 2. To explain the application of thermodynamics.
- 3. To analyze Gas Power cycles and Vapour power cycles
- 4. To identify the sources of energy and their conversions
- 5. To undertake the performance analysis of a steam generator.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Identify notations and governing laws of thermodynamics.

CO2: Explain the concepts of entropy and apply the thermodynamics laws to formulate for closed systems and open systems.

CO3: Apply the first and second laws of thermodynamics to formulate and solve engineering problems for power cycles.

CO4: To understand Combustion in SI and CI engines and factors affecting performance parameters.

CO5: To estimate performance parameters by conducting a test on I. C. Engines.

CO6: To get conversant with steam generator and its performance calculations

2312201: Applied Thermodynamics

Units				
Unit 1	Laws of thermodynamics(6 Hrs.)	CO		
Introduction of thermodynamics, Review of basic definitions, Thermodynamic properties and their units, Zeroth law of thermodynamics, First law of thermodynamics, Joules experiment, Applications of first law to flow and non flow processes and cycles. Steady flow energy equation and its application to different devices. Limitations of First law, Second Law of thermodynamics, Equivalence of Clausius and Kelvin Plank Statement, PMM I and II.				
Unit 2Entropy and Ideal Gas(8 Hrs.)Entropy as a property, Clausius inequality, Principle of increase of Entropy, Change of entropy for an ideal gas and pure substance.Ideal Gas definition Gas Laws: Boyle's law, Charle's law, Avagadro's Law, Equation of State, Ideal Gas constant and Universal Gas constant, Ideal gas processes- on P-V and T-S diagrams Constant Pressure, Constant Volume, Isothermal, Adiabatic, Polytropic, Throttling Processes, Calculations of heat transfer, work done, internal energy. Change in entropy, enthalpy				
Unit 3Gas Power cycles and Vapour Power Cycle(8 Hrs.)Air Standard Cycle, Efficiency and Mean Effective Pressure, Otto Cycle, Diesel cycle, Dual cycle, Comparison of cycles, Brayton cycle, Refrigeration CycleUnitCarnot cycle, Rankine cycle, Comparison of Carnot cycle and Rankine cycle, Efficiency of Rankine cycle, Relative efficiency, Effect of superheat, boiler and condenser pressure on performance of Rankine cycle.Image: Comparison of Cycle				
Unit 4	SI and CI Engines (7 Hrs.)	CO4		

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-III 2312201: Applied Thermodynamics

IC and EC engines, I.C. Engine construction - components and materials, Engine Nomenclature, Valve timing diagram, Intake and exhaust system, Engine classification, Applications.

SI Engines: Theory of Carburetion and Types of Carburetor, Working of Simple Carburetor, Combustion stages in SI engines, Abnormal Combustion, Theory of Detonation and Parameters affecting detonations.

CI Engines: Fuel Injection system, Construction and Working of Fuel Pump, Fuel Injector and Combustion stages in CI engines, Theory of knocking and Parameters affecting knocking,

Unit 5	Testing of IC Engines(7 Hrs.)		
brake powe parameters,	f testing, Various performance parameters for I.C. Engine - Indicated power, r, friction power, SFC, AF ratio etc. Methods to determine various performance characteristic curves, heat balance sheet. Supercharging and turbo-charging d their limitations.	C05	
Unit 6	Steam Generators(6 Hrs.)		
Classification of steam generators, Constructional details of low pressure boilers, Features of high pressure (power) boilers, Introduction to IBR Act Boiler draught (natural and artificial draught) Boiler performance calculations-Equivalent evaporation, Boiler efficiency Energy balance.			

Text Books

- 1. Nag, P. K., "Engineering Thermodynamics," Tata McGraw-Hill Publisher Co. Ltd.
- 2. R. K. Rajput, Engineering Thermodynamics, EVSS Thermo Laxmi Publications.
- 3. V. Ganesan, "Internal Combustion Engines", Tata McGraw-Hill

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-III 2312201: Applied Thermodynamics

- 4. M. L. Mathur and R.P. Sharma, "A course in Internal combustion engines", Dhanpat Rai & Co.
- 5. H.N. Gupta, "Fundamentals of Internal Combustion Engines", PHI Learning Pvt. Ltd.

- Y. Cengel & Boles: Thermodynamics An Engineering Approach, Tata McGraw Hill Publications.
- 2. P. L Ballany: Thermal Engineering, Khanna Publishers.
- 3. C.P. Arora: Engineering Thermodynamics, Tata McGraw Hill Publications.

2312202: Strength of Materials

Teaching Scheme:	Credits	Examination Scheme		
Theory: 3 hrs/week	Th:03	Theory	CIA: 50	
Practical:	Practical:	- Theory	End-Sem:50	
Prerequisite : Nil		Pract:		
		Oral:		
		Termwork		

Course Objectives:

The course enables the students with an understanding of fundamental concepts of stress, strain and the response of solid engineering materials to external loadings.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Explain the concepts of stress & strain and **calculate** deformation under different loading conditions.

CO2: Analyze the principal stresses in elements and calculate strain energy based on loading condition.

CO3: Construct shear force & bending moment diagram for various loading conditions and **calculate** bending stresses in beams.

CO4: Formulate slope and deflection equations for beams subjected to various loads.

CO5: Construct shear stress distribution diagram and **analyze** torsional shear stresses in circular shafts.

CO6: Analyze stresses in cylinders and evaluate buckling in columns.

2312202: Strength of Materials

	Units		
Unit 1	Simple Stresses & Strains(7 Hrs.)	CO	
	ess, Shear stress, Strain, Stress strain relation, Elastic limit, Hooke's law, Modulus y, Modulus of rigidity, Factor of safety, Bars of varying sections, Bars of	CO1	
-	sections, Thermal stresses, Longitudinal strain, Lateral strain, Poisson's ratio, strain, Bulk modulus.	COI	
Unit 2	Principal Stresses and Concept of Strain Energy (7 Hrs.)		
Principal S	tresses and Strains: Normal stress and shear stress on inclined plane, Principal		
planes and circle.	principal stresses, Maximum shear stress, Stresses on oblique section, Mohr's	CO2	
Strain Ener	gy: Resilience, Proof resilience, Modulus of resilience, Static loads, Dynamic uating loads, Strain energy in gradual, sudden and impact loading.		
U nit 3	Shear Force, Bending Moment and Bending Stresses in Beams(7 Hrs.)		
Shear Forc	e and Bending Moment: Concept of shear force and bending moment, Types of		
beams, Typ	bes of load, Shear force and bending moment diagrams, Point of contra flexure.		
Bending St	resses in Beams: Simple bending, Neutral axis and moment of resistance, Section	CO3	
nodulus, S	ymmetrical sections, Unsymmetrical sections, Strength of a section, Composite		
beams.			
Analysis of	beams for shear force and bending moment using CAD tools.		
U nit 4	Deflection of Beams (6 Hrs.)		
Slope, defl	ection and radius of curvature, Relation between slope, deflection and radius of	CO4	
curvature, Derivation of differential equation of elastic curve, Double integration method,			
Macaulay's	s method, Castigliano's theorem.		
Unit 5	Shear Stresses in Beams and Torsion(8 Hrs.)		
Shear Stresses in Beams: Concept of shear stress, Shear stress distribution diagram for			
common s	ymmetrical sections, Effect of shear stresses in beams, Maximum and average	CO5	
sheer stres	s, Shear connection between flange and web.		

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-III 2312202: Strength of Materials

Torsion: Theory of pure torsion, Torsional moment of resistance, Polar modulus, Power transmitted by shaft, Torsional rigidity, Stepped shafts, Composite shafts, Shafts with fixed ends, Shafts in series and parallel, Torque transmitted by solid and hollow shafts, Closed coil helical springs in series and parallel.

Unit 6	Unit 6Axially loaded columns and stresses in cylinder(7 Hrs.)			
Axially Loaded Columns: Axially loaded compression members, Crushing load, Buckling				
of column,	Euler's column theory, Limitation of Euler's formula, Rankine's	method,	CO6	
Expression of crippling load, Effective length of column.				
Stresses in	Cylinders: Circumferential and longitudinal stresses, Maximum shea	r stress,		
Deformatio	on of cylinders, Compound cylinders.			

Text Books

- Strength of Materials, S. Ramamrutham and R. Narayanan, 18th Edition, 2018, Dhanapat Rai Publishing Company.
- 2. Strength of Materials, R. K. Bansal, 6th Edition, 2017, Laxmi Publications.

- Mechanics of Material, Ferdinand P Beer, E Russell Johnston, John T DeWolf, David F Mazurek, 7th Edition, 2015, Tata McGraw Hill.
- 2. Mechanics of Materials by R. C. Hibbeler, 10th edition, 2018, Pearson EducationY.

2312203: Manufacturing Processes

Teaching Scheme:	Credits	Examination Scheme		
Theory: 2 hrs/week	Th:02	Theory	CIA: 25	
Practical:	Practical:	- Theory	End-Sem:50	
Prerequisite : Nil		Pract:		
		Oral:		
		Termwork		

Course Objectives:

- 1. Describe various sand and permanent mould casting methods, procedure and mould design aspects.
- 2. Understand basics of metal forming processes, equipment and tooling.
- 3. Understand sheet metal forming operations and die design procedure.
- 4. Classify, describe and configure the principles of various welding techniques.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Understand and select appropriate moulding, core making and melting practice and estimate pouring time, solidification rate and design riser size and location for sand casting process

CO2: Understand mechanism of metal forming techniques and calculate load required for flat rolling

CO3: Classify and explain different welding processes and evaluate welding characteristics

CO4: Demonstrate press working operations and apply the basic principles to design dies and tools for forming and shearing operations

2312203: Manufacturing Processes

	Units			
Unit 1	Moulding and Casting Processes (7 Hrs.)	CO		
Introduction	to casting processes, Patterns: Pattern materials, types of pattern, allowances pattern			
design, Moulding sand, Properties of moulding sands, Core making, Melting practices and				
furnaces, Po	uring and Gating system design, Numerical estimation to find mold filling time, Riser			
design and placement, Principles of cooling and solidification of casting, Directional and				
Progressive	solidification Estimation of solidification rate, Cleaning and Finishing of casting,			
Defects and	remedies, Principle and equipments of Permanent mould casting, Investment casting,			
Centrifugal	casting, Continuous casting			
Unit 2	Bulk Metal Forming Processes(7 Hrs.)			
Plastic defor	mation. Stress-strain diagram for different types of material, Hot and Cold working,			
Factors affe	cting plastic deformation, Yield criteria, Concept of flow stress, Forming Limit			
diagram				
Rolling Process: Rolling terminology, Friction in rolling, Calculation of rolling load				
Forging: Op	en and closed die forging, Forging operations	CO2		
Extrusion: '	Гуреs, Process parameter			
Wire and T	ube Drawing: Wire and tube drawing process, Die profile			
Friction and	lubrication in metal forming, Forming defects, causes and remedies for all forming			
processes				
Unit 3	Metal Joining Processes(7 Hrs.)			
Types of me	etal joining processes, weldability, types of welding; arc welding: carbon arc, metal			
arc, metal i	nert gas, tungsten inert gas, plasma arc, submerged arc, electro-slag; gas welding;	CO3		
resistance	velding: butt, spot, seam, projection; solid-state welding: friction, ultrasonic,	COJ		
explosive; thermit welding, advanced welding processes viz. laser welding and electron beam				
welding; bra	zing, soldering, adhesive bonding.			
Unit 4	Sheet Metal Forming(7 Hrs.)			
	neet metal operations, Press working equipment and terminology, Types of dies, nalysis, Estimation of cutting forces, Centre of pressure and blank size determination,	CO4		

2312203: Manufacturing Processes

Design of strip lay-out, Blanking die design, Introduction to Drawing, Bending dies, Methods of reducing forces, Formability and forming limit diagrams

Text Books

- 1. Manufacturing Technology (Volume I), P. N. Rao, 3rd edition, 2011, Tata McGraw Hill.
- 2. Workshop Technology (Volume I), Hajra Chaudhary, 16th Edition, 2009, Media Promoters & Publishers.
- 3. Workshop Technology (Volume I and II), B. S. Raghuwanshi, 10th Edition, 2009, Dhanpatrai and company.
- 4. Manufacturing Science, Ghosh & Malik, 1st Edition, 1986, East-West Press.
- 5. P. C. Sharma, "Production Engineering", Khanna Publishers.

- 1. Manufacturing Engineering & Technology, Kalpakjian, 4th Edition, 2002, Pearson.
- 2. Workshop Practice, H. S. Bawa, 8th Edition, 2009, Tata Mc-Graw Hill.
- 3. Production Technology, R. K. Jain, 17th Edition, 1986, Khanna Publishers.

2312204: Strength of Materials Lab

Teaching Scheme:	Credits	Examinati	on Scheme
Theory:	Th:	Theory	CIA:
Practical: 2 hrs/week	Practical: 01	Theory	End-Sem:
Prerequisite : Nil		Pract:	25
		Oral:	25
		Termwork	

Course Objectives:

The course enables the students with an understanding of fundamental concepts of stress, strain and the response of solid engineering materials to external loadings.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Explain the concepts of stress & strain and calculate deformation under different loading conditions.

CO2: Analyze the principal stresses in elements and calculate strain energy based on loading condition.

CO3: Construct shear force & bending moment diagram for various loading conditions and calculate bending stresses in beams.

CO4: Formulate slope and deflection equations for beams subjected to various loads.

CO5: Construct shear stress distribution diagram and analyze torsional shear stresses in circular shafts.

CO6: Analyze stresses in cylinders and evaluate buckling in columns.

2312204: Strength of Materials Lab

Practical Wor	k:-	
The student sh	all complete the following activity as a practical work.	
Expt. No. 1	Tension test for Ductile material using extensometer on Universal Testing Machine	CO1
Expt. No. 2	Compression test for Brittle material on Universal Testing Machine.	CO1
Expt. No. 3	Shear test of ductile material on Universal Testing Machine.	CO2
Expt. No. 4	Tension test of Plastic/Composite material on low load capacity Tensile Testing Machine.	CO2
Expt. No. 5	Experimental verification of flexural formula in bending for cantilever, Simple supported beam.	CO3, CO4
Expt. No. 6	Experimental verification of torsion formula for circular bar.	CO5
Expt. No. 7	Failure Mode Analysis and Stresses in structures with case study. (Self-learning)	CO6
Expt. No. 8	Analysis of stresses in any one component from syllabus using software tool (Self-learning)	CO1-CO6

Text Books

- Strength of Materials, S. Ramamrutham and R. Narayanan, 18th Edition, 2018, Dhanapat Rai Publishing Company.
- 2. Strength of Materials, R. K. Bansal, 6th Edition, 2017, Laxmi Publications.

- Mechanics of Material, Ferdinand P Beer, E Russell Johnston, John T DeWolf, David F Mazurek, 7th Edition, 2015, Tata McGraw Hill.
- 2. Mechanics of Materials by R. C. Hibbeler, 10th edition, 2018, Pearson EducationY.

2312205: Applied Thermodynamics Lab

Teaching Scheme:	Credits	Examination Scheme	
Theory:	Th:	Theory	CIA:
Practical: 2 hrs/week	Practical: 01	Theory	End-Sem:
Prerequisite : Nil		Pract:	
		Oral:	25
		Termwork	

Course Objectives:

- 1. To understand laws of thermodynamics.
- 2. To explain the application of thermodynamics.
- 3. To analyze Gas Power cycles and Vapour power cycles.
- 4. To identify the sources of energy and their conversions.
- 5. To undertake the performance analysis of a steam generator.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Identify notations and governing laws of thermodynamics.

CO2: Explain the concepts of entropy and apply the thermodynamics laws to formulate for closed systems and open systems.

CO3: Apply the first and second laws of thermodynamics to formulate and solve engineering problems for power cycles.

CO4: To understand Combustion in SI and CI engines and factors affecting performance parameters.

CO5: To estimate performance parameters by conducting a test on I. C. Engines.

CO6: To get conversant with steam generator and its performance calculations

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-III 2312205: Applied Thermodynamics Lab

Practical Work:-The student shall complete out of 6 experiment from Group-A and visit reports from **Group-B** is compulsory **Group** -A Joule's experiment to validate first law of thermodynamics. Expt. No. 1 **CO1, CO2** Expt. No. 2 Study of Gas Turbine Model **CO3** Expt. No. 3 Study of Steam Engine model. **CO4** Study and working of Two stroke Petrol and Diesel Engine. Expt. No. 4 **CO4** Expt. No. 5 Study and working of Four stroke Petrol and Diesel Engine. **CO4** Expt. No. 6 Determination of Indicated H.P. of I.C. Engine by Morse Test. **CO5** Expt. No. 7 To study low pressure boilers and their accessories and **CO6** mountings. Expt. No. 8 To study high pressure boilers and their accessories and **CO6** mountings. Group -B The Visit of Students to Thermal Power Plant is mandatory, to Visit **CO3CO4CO6** provide awareness and understanding of Course The Visit of Students to Non-Convectional Power Plant is Visit **CO1CO3** mandatory, to provide awareness and understanding of Course

Text Books

- 1. Nag, P. K., "Engineering Thermodynamics," Tata McGraw-Hill Publisher Co. Ltd.
- 2. R. K. Rajput, Engineering Thermodynamics, EVSS Thermo Laxmi Publications.
- 3. V. Ganesan, "Internal Combustion Engines", Tata McGraw-Hill

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-III 2312205: Applied Thermodynamics Lab

- 4. M. L. Mathur and R.P. Sharma, "A course in Internal combustion engines", Dhanpat Rai & Co.
- 5. H.N. Gupta, "Fundamentals of Internal Combustion Engines", PHI Learning Pvt. Ltd.

- Y. Cengel & Boles: Thermodynamics An Engineering Approach, Tata McGraw Hill Publications.
- 2. P. L Ballany: Thermal Engineering, Khanna Publishers.
- 3. C.P. Arora: Engineering Thermodynamics, Tata McGraw Hill Publications.

2312206A: Sustainable & Green Energy

Teaching Scheme:	Credits	Examinati	Examination Scheme	
Theory: 3 hrs/week	Th:03	Theory	CIA: 50	
Practical:	Practical:	Theory	End-Sem:50	
Prerequisite : Nil		Pract:		
		Oral:		
		Termwork		

Course Objectives:

- 1. To understand the scope of non-conventional energy resources.
- 2. To understand the solar energy application.
- 3. To understand the energy generation process though Geothermal Energy.
- 4. To understand the role of wind energy.
- 5. To identify different biomass and biogas energy generation.
- 6. To understand ocean energy in the energy generation

Course Outcomes:

On completion of the course, learner will be able to-

CO1: To Understand the Need, importance and scope of non-conventional and alternate energy resources.

CO2: Able to understand the solar energy operation and its characteristics

CO3: To understand the role of geothermal energy in the energy generation.

CO4: To educate the wind energy operation and its types.

CO5: Able to understand the biomass and biogas energy generation and its technologies.

CO6: To understand the role of ocean energy in the energy generation

2312206A: Sustainable & Green Energy

	Units	
Unit 1	Introduction of Sustainable & Green Energy (6 Hrs.)	CO
conventiona	n: Causes of Energy Scarcity, Solution to Energy Scarcity, Various non- l energy resources- Introduction, availability, classification, relative merits and actors Affecting Energy Resource Development, Renewable Energy in India.	C01
Unit 2	Solar Thermal Energy(8 Hrs.)	
and perforn solar therma	mal Energy: Solar radiation, flat plate collectors and their materials, applications nance, focusing of collectors and their materials, applications and performance; al power plants, thermal energy storage for solar heating and cooling, limitations. Theory of solar cells. Solar cell materials, solar cell array, solar cell power plant,	CO2
	Geothermal Energy & Magneto-hydrodynamics (MHD)(7 Hrs.)I Energy: Resources of geothermal energy, thermodynamics of geo- thermalnversion-electrical conversion, non-electrical conversion, environmentalns.	СО3
and limitati	ydrodynamics (MHD): Principle of working of MHD Power plant, performance ons. Cells: Principle of working of various types of fuel cells and their working, e and limitations.	
classificatio	Wind Energy & Thermo-electrical and Thermionic Conversions (6 Hrs.) 'gy: Wind power and its sources, site selection, criterion, momentum theory, n of rotors, concentrations and augments, wind characteristics. Performance and of energy conversion systems.	CO4

2312206A: Sustainable & Green Energy

Thermo-ele	ectrical and thermionic Conversions: Principle of working, performance and	
limitations.		
Unit 5	Bio-mass & Biogas Energy (8 Hrs.)	
Gasification Gasification of Biomass Gasifier, Co Biogas End Production,	hergy: Biomass Production, Energy Plantation, Biomass Gasification, Theory of , Gasifier and Their Classifications, Chemistry of Reaction Process in , Updraft, Downdraft and Cross-draft Gasifiers, Fluidized Bed Gasification, Use Gasifier, Gasifier Biomass Feed Characteristics, Applications of Biomass oling and Cleaning of Gasifiers ergy: Introduction, Biogas and its Composition, Anaerobic Digestion, Biogas Benefits of Biogas, Factors Affecting the Selection of a Particular Model of a t, Biogas Plant Feeds and their Characteristics	CO5
Unit 6	Tidal Energy & Ocean Thermal Energy Conversion(7 Hrs.)	
Generation in Tides, Tr Tidal Power Ocean The	gy: Introduction, Tidal Energy Resource, Tidal Energy Availability, Tidal Power in India, Leading Country in Tidal Power Plant Installation, Energy Availability idal Power Basin, Turbines for Tidal Power, Advantages and Disadvantages of r, Problems Faced in Exploiting Tidal Energy. rmal Energy Conversion (OTEC): Availability, theory and working principle, e and limitations	CO6

Text Books

- 1. John Twideu and Tony Weir, "Renewal Energy Resources" BSP Publications, 2006.
- M.V.R. Koteswara Rao, "Energy Resources: Conventional & Non-Conventional" BSP Publications, 2006.
- 3. Raja et. al, "Introduction to Non-Conventional Energy Resources" Scitech Publications.

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-III 2312206A: Sustainable & Green Energy

- 4. D.S. Chauhan,"Non-conventional Energy Resources" New Age International.
- 5. C.S. Solanki, "Renewal Energy Technologies: A Practical Guide for Beginners" PHI Learning.
- Peter Auer, "Advances in Energy System and Technology". Vol. 1 & II Edited by Academic Press.
- 7. Godfrey Boyle, "Renewable Energy Power for A Sustainable Future", Oxford University Press.

- 1. Khan, B. H., "Non-Conventional Energy Sources, Tata McGraw-Hill Publisher Co. Ltd.
- 2. Renewable Energy Sources: Twidell & Weir, CRC Press.
- 3. Solar Energy/ S.P. Sukhatme, Tata McGraw-Hill.
- 4. Non-Conventional Energy Systems: K M. Mittal, A H Wheeler Publishing Co Ltd.
- 5. Biomass Energy, Oxford &IBH Publication Co.

2312206B: Production Processes

Teaching Scheme:	e: Credits Examination		on Scheme
Theory: 3 hrs/week	Th:03	Theory	CIA: 50
Practical:	Practical:	Theory	End-Sem:50
Prerequisite : Nil		Pract:	
		Oral:	
~ ~ ~ ~		Termwork	
Course Objectives:			
1. To understand the bas	ic concept of casting processes		
2. To understand the bas	ic concept of metal forming and its application	L	
3. Classify, describe and	configure the principles of various welding te	chniques.	
4. To understand the con	ventional and nonconventional machining pro-	cesses.	
5. To know about the con	mputer integrated manufacturing processes.		
Course Outcomes:			
On completion of the co	ırse, learner will be able to–		
CO1: Illustrate and elabor	rate different casting processes.		
CO2: Interpret different k	inds of metal forming processes.		
CO3: Elaborate the differ	ent types of welding processes as per applicati	ons.	
CO4: Interpret about mac	hining tools and machining mechanism		
CO5: Elaborate the differ	ent kinds of non-traditional machining process	es	
CO6: Explain the comput	er integrated manufacturing processes		

2312206B: Production Processes

	Units	
Unit 1	Casting (6 Hrs.)	CO
Introduction	to casting processes and applications, patterns – types and materials, allowances,	CO1
molds and a	cores – materials, design of gating and riser, Casting defects.	CO1
Unit 2	Metal forming (7 Hrs.)	
Introduction	n to hot and cold working – forging, rolling, extrusion and wire drawing,	
Introduction	n to sheet metal working processes – blanking, bending and deep drawing, Metal	CO2
working de	fects.	
Unit 3	Joining of materials (8 Hrs.)	
Introduction	to fusion welding processes (metal arc, MIG, TIG, plasma arc, submerged arc	
welding pr	ocesses), Different heat sources (flame, arc, resistive, laser, electron beam),	CO 2
Principles of	of solid state welding processes (friction, explosive welding, ultrasonic welding	CO3
processes),	Principles of adhesive, brazing and soldering processes, Origins of welding	
defects.		
Unit 4	Machine Tools and Machining(7 Hrs.)	
Basic mach	ine tools like centre lathe, milling machine, and drilling machine, Machining	
processes -	turning, drilling, boring, milling, grinding, Geometry of single point cutting tools,	CO4
chip forma	tion, cutting forces, Merchant's analysis, Tool materials and tool life, Cutting	
fluids.		
Unit 5	Non-traditional machining (7 Hrs.)	
Introduction	n to non-traditional machining processes – Ultrasonic machining, Abrasive jet	005
machining,	Water jet machining, Abrasive water jet machining, Electric discharge machining,	CO5
Laser beam	machining, Electron beam machining, Plasma and Electro chemical machining.	
Unit 6	Computer Integrated Manufacturing (7 Hrs.)	
	epts of CAD and CAM, Automation in manufacturing, Cellular manufacturing and up technology, CAPP.	CO6

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-III 2312206B: Production Processes

Text Books

- 1. Production Technology by P.C. Sharma S Chand & Co Ltd.
- 2. Manufacturing Technology Vol. I & II, By P.N. Rao, Tata McGraw Hill.
- 3. Manufacturing Engineering and Technology by S. Kalpakjian, Pearson.
- 4. Production technology, by R.K. Jain, Khanna publishers.

- Degarmon's Materials and Processes in Manufacturing, 11th Ed. Black, Ronald A Kohser, Wiley India
- 2. Manufacturing Processes and Systems, 9th Ed. Phillip F., Ostwald, Jairo Munoz, Wiley India
- 3. Welding Technology, by O. P. Khanna, Dhanpat Rai publishers.

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech (Common) (2023 Pattern)

Sem-III

2300201: Principles of Management

Teaching Scheme:	Credits	Examination Scheme		redits Examination Scheme
Theory: 2 hrs/week	nrs/week Th:02	CIA: 25		
		Theory	End-Sem:50	
		Pract:		
		Oral:		
		Termwork		

Course Objectives: The student should be able to

- 1. Comprehend the nature and characteristics of management, its scope, and various functional areas.
- 2. Recognize the importance of ethical values in managerial decision-making and actions.
- 3. Explore the concepts of authority, delegation, decentralization, and their impact on organizational structure.
- 4. Analyze the techniques of coordination in managing complex organizational tasks.

Course Outcomes:

On completion of the course, learner will be able to-

- **CO1:** Inculcate The Ability To Apply Multifunctional Approach To Organizational Objective.
- **CO2:** Apply Process Based Thinking And Risk Based Thinking For Managing And Improving The Functioning Of An Organization
- **CO3:** Examine The Inter-Relationships Between The Planning And Organising, Directing And Communicating, Controlling And Coordinating Etc.
- CO4: Develop Skills For Corrective Action Management And Continual Improvement Project Management.

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S. Y. B. Tech (Common) (2023 Pattern) Semester: III

2300201: Principles of Management

Unit 1:Introduction to Management 7hrs	CO
Definition and scope of management, Evolution of management theories, Functions of management: planning, organizing, leading, and controlling, Managerial roles and skills, Challenges and opportunities in contemporary management, Management As A Science, Art Or Profession; Management And Administration; Difference Between management And Administration. Significance Of Values And Ethics In Management	CO1
Unit 2: Planning, Organizing and Decision Making7hrsNature, Scope, Objective And Significance Of Planning, Elements And Steps Of Planning, Decision Making Organizing Principles, Span Of Control, Line And Staff Relationship, Authority, Delegation And Decentralization. Effective Organizing, Organizational Structures, Formal And Informal Organizations, Staffing, Importance of planning in achieving organizational goals, Types of plans: strategic, tactical, operational, Process of decision making, Decision-making models and techniques, Setting objectives and formulating strategies	CO2
Unit 3:Organizing and Organizational Structure, Leading and Managing Human Resources 7hrs 7hrs Principles of organizing, Types of organizational structures, Departmentalization and delegation of authority, Coordination and integration of activities, Formal and informal organization, The role of leadership in management, Leadership styles and their impact on organizational culture, Recruitment,Selection,Placement,Promotion,Separation,Performance Appraisal,Meaning And Nature Of Direction, Motivation theories and their application in the workplace, Communication and its importance in effective leadership, Managing diversity and fostering inclusivity.	CO3
Unit 4: Communicating, Controlling And Coordinating7hrsCommunication - Meaning And Importance, Communication Process, Barriers To Communication, Steps To Overcome Communication Barriers, Types Of Communication; Motivation Theories - Maslow's Need Hierarchy Theory, Herzberg's Two Factor Theory. Leadership - Meaning, Formal And Informal Leadership, Characteristics Of Leadership; Leadership Styles - Autocratic Style, Democratic Style, Participative Style, Laissez Faire Leadership Styles, Transition Leadership, Charismatic Leadership Style, Elements Of Managerial Control, Control Systems, Management Control Techniques, Effective Control Systems. Coordination, Concept Of Managerial Effectiveness.	CO4

Text Books

- 1. Principles of Management" by P. C. Tripathi and P. N. Reddy
- 2. Fundamentals of Management" by R. S. Dwivedi
- 3. "Management: Theory and Practice" by Kris Cole
- 4. "Principles of Management" by V. S. Ramaswamy and S. Namakumari
- 5. Essentials of Management" by Harold Koontz and Heinz Weihrich (Indian adaptation by A. Aryasri)

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S. Y. B. Tech (Common) (2023 Pattern) Semester: III

2300201: Principles of Management

- 1. Management: Tasks, Responsibilities, Practices" by Peter F. Drucker
- 2. The Practice of Management" by Peter F. Drucker
- 3. "Management: Text and Cases" by V. S. P. Rao
- 4. Management: Concepts and Practices" by Tim Hannagan
- 5. Management: Principles and Practice" by S. K. Chakraborty and D. Chatterjee
- 6. Modern Management: Concepts and Skills" by Samuel C. Certo and S. Trevis Certo
- 7. Management: A Global and Entrepreneurial Perspective" by Heinz Weihrich, Mark Cannice, and Harold Koontz

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S. Y. B. Tech (Common) (2023 Pattern)

Sem - III

2300202:Industrial Psychology

Teaching Scheme:	Credits	Credits Examination Scheme	Scheme
Theory: 2hrs/week	Th:02	Theory	CIA: 25
		—— Theory	End-Sem:50
		Pract:	
		Oral:	
		Termwork	

Course Objectives: The student should be able to

- 1. Develop an awareness of the major perspectives underlying the field of Industrial Psychology.
- 2. Apply the principles of human psychology to the corporate field and familiarize them with the current practices in the corporate.
- 3. Develop an understanding of group dynamics, norms, and cohesiveness, enabling them to build and lead effective teams within the organization.
- 4. Familiarize with the field of occupational psychology and its applications in selection, placement, counseling, and training of employees.

Course Outcomes:

On completion of the course, learner will be able to-

- **CO1:** Learn about theories of motivation and group behavior.
- CO2: Understanding of key concepts, theoretical perspectives, and trends in industrial psychology.
- **CO3:** Analyze and interpret the role of motivation & Morale in behavior modification.
- CO4: Analyze the impact of human engineering and physical environment on job performance and employee well-being.
- CO5: Apply psychological principles in addressing work-related challenges...
- **CO6:** Design the role of psychologists in industrial settings and appreciate their impact on employee well-being and organizational performance.

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S. Y. B. Tech (Common) (2023 Pattern)

Sem - III

2300202:Industrial Psychology

Unit 1:Introduction 6hrs	CO
The role of the psychologist in industry, the field of occupational Psychology: Study of	0
	CO1
	CO1
selection, Placement, Counseling and training	
Unit 2: Design of Work Environments7hrs	
Human engineering and physical environment techniques of job analysis, Social environment:	
Group dynamics in Industry Personal psychology, Selection, training, placement, promotion,	CO2
counseling, job motivations, job satisfaction. Special study of problem of fatigue, boredom	
and accidents	
Unit 3: Individual and Group Behavior 7 hrs	
Introduction, Objectives, Individual Behavior, Individual Differences: Meaning, Nature,	
Dimensions and Values, Factors Influencing Individual Behavior, Group Behavior:	СОЗ,
Introduction, Objectives, Meaning, Definition and Advantages of Groups, Types of Groups,	CO4
Group Dynamics, Group Norms Group Cohesiveness	
Unit 4: Morale, Motivation& Counseling 8hrs	
Morale: Meaning, Types and Aspects, Characteristics of High and Low Morale and Essential	
and Psychological Requirements for High Morale, Introduction, Objectives, Meaning,	
Importance and Types of Motivation in Industry, Monetary and Non-Monetary Incentives,	CO5,
Fatigue, Boredom and Monotony: Meaning, Causes and Remedies, Introduction, Objectives,	CO6
Counseling: Meaning, Significance, Types and Process, Employee Health, Safety and	-
Security, Industrial Accidents: Accident Proneness and Prevention	

Text Books

- 1. Tiffin, J and Mc Cormic E.J., Industrial Psychology, Prentice Hall, 6th Edn., 1975.
- 2. Mc Cormic E.J., Human Factors Engineering and Design, McGraw Hill, 4th Edn., 1976.
- 3. Mair, N.R.F., Principles of Human relations
- 4. Gilmer, Industrial Psychology
- 5. Ghiselli & Brown, Personnel and Industrial Psychology.
- 6. Myer, Industrial Psychology.
- 7. Dunnete, M.D., Handbook of Industrial and Organizational Psychology.
- 8. Blum & Taylor, Industrial Psychology

- 1. Miner J.B. (1992) Industrial/Organizational Psychology. N Y : McGraw Hill.
- 2. Blum & Naylor (1982) Industrial Psychology. Its Theoretical & Social Foundations CBSPublication.
- 3. Aamodt, M.G. (2007) Industrial/Organizational Psychology : An Applied Approach
- 4. (5 th edition) Wadsworth/Thompson : Belmont, C.A.Blum M.L. Naylor J.C., Horper& Row, IndustrialPsychology, CBS Publisher, 1968
- 5. Luthans, Organizational Behaviour, McGraw Hill, International, 1997
- 6. Morgan C.t., KingR.A., John Rweisz & John Schoples, Introduction to Psychology, McHraw Hill, 1966
- 7. Schermerhorn J.R.Jr., Hunt J.G & Osborn R.N., Managing, Organizational Behaviour, John Willy

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech (Common) (2023 Pattern)

Sem-IV

2300203: Design Thinking

Teaching Scheme:	Credits	Examinati	on Scheme
Theory: 1hrs/week	Th:01	Theory	CIA:
Practical: 2 hrs/week	Practical: 01	— Theory	ESE:25
Prerequisite :		Pract:	
		Oral:	25
		Termwork	25
Course Objectives:			
The student should be able	to		
1. Learn design thinking con	cepts and principles		
2. Use design thinking metho	ods in every stage of the problem		
3. Learn the different phases	of design thinking		
4. Apply various methods in	design thinking to different problems		
Course Outcomes:			
On completion of the cours	e, learner will be able to		
CO1. Define key concepts of	f design thinking		
CO2. Practice design thinkin	g in all stages of problem solving		
CO3 . Apply design thinking	approach to real world problems		

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech (Common) (2023 Pattern) Sem-IV

2300203:Design Thinking

Unit 1 Introduction, Understand, Observe and Define The Problem7hrs	CO
Why Design? - Four Questions, Ten Tools - Principles of Design Thinking - The process of Design Thinking - How to plan a Design Thinking project. Search field determination - Problem clarification - Understanding of the problem - Problem analysis - Reformulation of the problem - Observation Phase - Empathetic design - Tips for observing - Methods for Empathetic Design - Point-of-View Phase - Characterization of the target group - Description of customer needs	CO1 CO2 CO3
Unit 2 Ideation, Prototyping, Testing and Implementation7hrs	
Ideate Phase - The creative process and creative principles - Creativity techniques - Evaluation of ideas - Prototype Phase - Lean Startup Method for Prototype Development - Visualization and presentation techniques. Test Phase - Tips for interviews - Tips for surveys - Kano Model - Desirability Testing - How to conduct workshops - Requirements for the space - Material requirements - Agility for Design Thinking	CO1 CO2 CO3

TEXT BOOKS :

- 1. Christian Mueller-Roterberg, Handbook of Design Thinking Tips &Tools for how to design thinking.
- 2. Designing for Growth: a design thinking tool kit for managers By Jeanne Liedtka and Tim Ogilvie.
- 3. Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation by Tim Brown.

REFERENCES:

- 1. Johnny Schneider, "Understanding Design Thinking, Lean and Agile", O'Reilly Media, 2017.
- 2. Roger Martin, "The Design of Business: Why Design Thinking is the Next Competitive Advantage", Harvard Business Press, 2009.
- 3. HassoPlattner, ChristophMeinel and Larry Leifer (eds), "Design Thinking: Understand Improve Apply", Springer, 2011
- 4. http://ajjuliani.com/design-thinking-activities/
- 5. https://venturewell.org/class-exercises

LIST OF EXPERIMENTS:

- 1. Case study on understanding of the design thinking problems.
- 2. Case study on observations of the parameters of design thinking problems.
- 3. Case study on defining design thinking problems.
- 4. Case study on description of customer needs of the parameters of design thinking problems.
- 5. Case study of ideation phase of solving design thinking problems
- 6. Case study of prototyping phase of solving design thinking problems
- 7. Case study of testing phase of solving design thinking problems
- 8. Case study of implementation phase of solving design thinking problems

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech (Common) (2023 Pattern) Sem-III

2300204 : Community Engagement Project

Teaching Scheme:	Credits	Examinati	on Scheme
Theory:	Pr:02	Theory	CIA:
Practical: 4 hrs/week		Theory	End-Sem:
		Pract:	
		Oral:	25
		Termwork	25

Course Objectives: The student should be able to

- 1. sensitize the students to the living conditions of the people in the surroundings.
- 2. bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability.
- 3. make students aware of their inner strength and help them to find new /out of box solutions to the social problems.
- 4. make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.
- 5. help students to initiate developmental activities in the community in coordination with public and government authorities.
- 6. develop a holistic life perspective among the students by making them to study culture, traditions, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Survey for the development of the community.

CO2: Interpret the social issues that confront the vulnerable / marginalized sections of the society. **CO3:** Build team for societal change.

CO4: Create an opportunity to familiarize themselves with urban / rural community they live in.

CO5: plan activities based on the focused groups.

CO6: implement the ways of transforming the society through systematic programme implementation.

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech (Common) (2023 Pattern) Sem-III 2300204 : Community Engagement Project

PROCEDURE

Students in a group (Maximum 5) can take up a planned community work for minimum of 50 hours. Evaluation of student's work will be based on the planning, execution and documentation of work, and a viva-voce by Departmental panel.

A group of students could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to commute from their residence and return back by evening or so.

The Community Service Project is a twofold one

- i. First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. For ex., a student of Arts will focus on socio-economic conditions, social survey and about the Government's social security schemes. This should not be viewed as a duplication of work by the Village or Ward volunteers; rather, it could be another primary source of data.
- ii. Secondly, the student/s could take up a project work related to following domains.
 - a. Agriculture
 - b. Health
 - c. Marketing and Cooperation
 - d. Animal Husbandry
 - e. Horticulture
 - f. Fisheries
 - g. Sericulture
 - h. Revenue and Survey
 - i. Natural Disaster Management
 - j. Irrigation
 - k. Law & Order
 - 1. Excise and Prohibition
 - m. Mines and Geology
 - n. Energy

The assessment is to be conducted for 50 marks. The number of credits assigned is 2. Later as per the present practice the marks are converted into grades and grade points to include finally in the SGPA and CGPA.

The weightings shall be:

Project Report	50%
Presentation	50%

2312701: IC Engine Maintenance

Teaching Scheme:	Credits	Examinati	Examination Scheme	
Theory:	Th:	Theory	CIA:	
Practical: 2 hrs/week	Practical:	— Theory	End-Sem:	
Prerequisite : Nil		Pract:		
		Oral:		
		Termwork		

Course Objectives:

1. To make student familiar with IC Engine testing and maintenance procedure.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Understand and apply engine testing procedure and measure corresponding parameters.

CO2: Prepare heat balance sheet and can plot performance characteristics curve.

CO3: Carry out maintenance of engines in real life scenario.

2312701: IC Engine Maintenance

Topics for Teaching & Training
1. Disassembly and Assembly of engines
2. Study of advanced diesel and gasoline engine technology engines
3. Study and drawing of engine components with dimensions.
4. Engine Testing Procedure, Measurement of indicated power, Brake power, fuel consumption,
Air Consumption
5. Heat balance sheet of IC Engines and performance characteristic curves.
6. Visit to any workshop and study on practical engine maintenance procedures

Evaluation

Student shall submit a report on his interpretation of all the topics covered as a part of classroom teaching and actual field visit.

- 1. Internal Combustion Engine Handbook (2016), Tech Trans by SAE International.
- 2. Internal Combustion Engines (2022), Giancarlo Ferrari, Angelo Onorati, Gianluca D'Errico by Società Editrice Esculapio.
- 3. Internal Combustion Engines Performance, Fuel Economy and Emissions (2014), Institution of Mechanical Engineers by Elsevier Science.
- Fundamentals of Internal Combustion Engines (2006), H N Gupta by Prentice Hall of India Pvt. Ltd.

2312801: Welding Technology

Teaching Scheme:	Credits	Examination Scheme	
Theory:	Th:	Theory	CIA:
Practical: 2 hrs/week	Practical:		End-Sem:
Prerequisite : Nil		Pract:	
		Oral:	
		Termwork	

Course Objectives:

1. Student will be able to relate with welding technologies available in the market for different materials.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Explain the basics of welded joints and different welding technologies.

CO2: Understand the process limitation of different welding methods

CO3: Select the most optimum welding technology based on materials and application

2312801: Welding Technology

Modules	Topics covered	СО
1	Basics of welding joints, weld zone, flux, types of welding processes,	
	weldability, welding defects and limitations. (3 Hrs.)	
2	Arc welding: carbon arc, metal arc, metal inert gas, tungsten inert gas,	CO1, CO2
	plasma arc, submerged arc, electro-slag; gas welding; resistance welding:	
	butt, spot, seam, projection. (4 Hrs.)	
3	Solid-state welding: friction, ultrasonic, explosive; thermit welding,	CO1, CO2
	advanced welding processes viz. laser welding and electron beam	
	welding; brazing, soldering, adhesive bonding. (4 Hrs.)	
4	Case study on industrial applications for welding of different materials	CO3
	(4 Hrs.)	

Students shall submit a report based on the above modules for the assessment of this course.

Text Books

- 1. Advanced Welding Technologies by K.S. Yadav, S. Chand Publication.
- 2. Welding Technology by O. P. Khanna, Dhanpat Rai Publishers.

- 1. Welding & Welding Technology by Richard Little, MC Graw Hill Education.
- 2. Welding Technology by GD Garg, S.K. Kataria & Sons

VAC121: Solid Modeling & Drafting

Teaching Scheme:	Credits	Examinati	on Scheme
Theory:	Th:	Theory	CIA:
Practical: 2 hrs/week	Practical: 01		End-Sem:
Prerequisite : Nil	Pract:	25	
		Oral:	
		Termwork	

Course Objectives:

- 1. To understand basic structure of CAD systems and their use to create geometric models of simple engineering parts.
- 2. To introduce the curves and surfaces and their implement in geometric modeling.
- 3. To apply basic concepts of 3D modeling, viewing and evaluate mass properties of components and assemblies.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Understand basic concepts of CAD system, need and scope in Product Lifecycle Management

CO2: Utilize knowledge of curves and surfacing features and methods to Create complex solid geometry

CO3: Construct solid models, assemblies using various modeling techniques & Perform mass

property analysis, including creating and using a coordinate system

CO4: Understand different CAD programming languages.

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-III VAC121: Solid Modeling & Drafting

Practical Wo	rk:-	
The student s	hall complete the following activity as a practical work using suitable CAD so	oftware.
Expt. No. 1	Study on basics of CAD.	CO1
Expt. No. 2	2-D sketching with geometrical and dimensional constraints	CO2
Expt. No. 3	Solid & Surface modeling for simple mechanical components (Output file as Production drawing and Model Based Definition (MBD) (a) Sheet- Metal (b) Machining (c) Fabrication (d) Casting (e) Forgings (f) Plastic Molding	CO2
Expt. No. 4	Assembly modeling (Output file as Assembly drawing and detailing) of the parts modeled in Practical assignment-2 using proper assembly constraint conditions and generation of exploded view for assemblies like Couplings, Clutches, Gear Assemblies, Engine/Pump/Turbine Components, Valves, Machine Tools, Automobile Components, Gear-Box, Pressure Vessels, etc. (One Component)	CO3
Expt. No. 5	Assembly modeling as mentioned in experiment 3 (Another Component)	CO3
Expt. No. 6	Reverse Engineering of surface/solid modeling using Point Cloud Data.	CO3
Expt. No. 7	Assembly Modeling by importing parts/components from free online resources like CAD and Product development software websites, forums, blogs, etc.	CO3
Expt. No. 8	Demonstration on CAD Customization (with introduction to programming languages, interfacing)	CO4

Text Books

- Zeid, I and Sivasubramania, R., (2009), "CAD/CAM : Theory and Practice", 2nd edition, McGraw Hill Education, ISBN-13: 978-0070151345
- Rao, P. N., (2017), "CAD/CAM: Principles and Applications", 3rd edition, McGraw Hill Education, ISBN-13: 978-0070681934.

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-III VAC121: Solid Modeling & Drafting

 Chang, Kuang-Hua, (2015), "e-Design: Computer-Aided Engineering Design", Academic Press, ISBN-13: 978-0123820389

- Lee, Kunwoo, (1999), "Principles of CAD/CAM/CAE Systems", Pearson/Addison-Wesley, ISBN-13: 978-0201380361
- Bordegoni, Monica and Rizzi, Caterina, (2011), "Innovation in Product Design: From CAD to Virtual Prototyping", Springer, ISBN-13: 978-1447161875
- Vukašinovic, Nikola and Duhovnik, Jože, (2019), "Advanced CAD Modeling: Explicit, Parametric, Free-Form CAD and Re-engineering", Springer, ISBN-13: 978-3030023980
- Um, Dugan, (2018), "Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory", 2nd edition, Springer, ISBN-13: 978-3319745930
- Rogers, D. and Adams, J. A., (2017), "Mathematical Elements for Computer Graphics", 2nd edition, McGraw Hill Education, ISBN-13: 978-0070486775
- Hearn, D. D. and Baker, M. P., (2013), "Computer Graphics with OpenGL", 4th edition, Pearson Education India, ISBN-13: 978-9332518711
- 7. Gokhale, N. S., Deshpande, S. S., Bedekar, S. V. and Thite, A. N., (2008), "Practical Finite Element Analysis", Finite to Infinite, Pune, India, ISBN-13: 978-8190619509
- Lee Ambrosius, (2015), "AutoCAD® Platform Customization: User Interface, AutoLISP®, VBA, and Beyond", John Wiley & Sons, Inc., IN, ISBN-13: 978-1118798904

SANDIP FOUNDATION'S

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE MAHIRAVANI, TRIMBAK ROAD, TAL & DIST: NASHIK-422213, MAHARASHTRA,INDIA B. Tech Mechanical Engineering

Semester – IV

				Teac (H		Sche Veek		E	Examination Scheme			
Sr. No.	Course Type	Course Code	Course Name	L		Р	C	Forma Assess CIA		Summ Assess ESE		Total Marks
	турс	Coue			-	-	C	Theory	Lab	Theory	Lab	
1	PC	2312207	Kinematics of Machinery	3			3	50		50		100
2	PC	2312208	Fluid Mechanics	3			3	50		50		100
3	PC	2312209	Engineering Materials and Metallurgy	2			2	25		50		75
4	PC (MD)	2312210	Mechatronics	2			2	25		50		75
5	PC	2312211	Kinematics of Machinery Lab			2	1				25 ^a	25
6	PC	2312212	Fluid Mechanics Lab			2	1				25 ^a	25
7	OE	2312213	Open Elective-II	2			2	25		50		75
8	IE (VEC)	2300205	First Level Course inForeign Language	2			2	25		50		75
9	IC (HSSM)	2300206	Industrial Economics	2			2	25		50		75
10	SDC (VSEC)	2312702	Refrigeration System Maintenance			2	1		25			25
11	EEC	2312802	Preventive Maintainance in Bearings									
12	IC (AEC)	2300207	Industrial Work Study	2			2	25		50		75
	TOTAL 18 00 06 21 250 25 400 50 725					725						
			First Level Course in For	eign l	Lang	uage	e (Ar	ny One)				
8	IE (VEC)	2300205A	German Language	2			2	25		50		75
8	IE (VEC)	2300205B	French Language	2			2	25		50		75
			Open l	Electiv	ve II							
7	OE	2312213A	Robotics	2			2	25		50		75
7	OE	2312213B	Automation in Manufacturing	2			2	25		50		75
			Value Add	led C	ours	e		1		1		1
13	VAC (VSEC)	VAC122	Geometric Dimensioning &Tolerancing (GD&T)			2	1		25			25
			Course Work (for Exit	Crite	erior	n to	UG	Diplom	<u>´</u>			
			or Project				2		50			50
	Internship (2 Weeks) 2 50 50											

2312207: Kinematics of Machinery

Credits	Examinati	on Scheme
Th:03	Theory	CIA: 50
Practical:	Incory	End-Sem:50
Prerequisite : Nil		
	Oral:	
	Th:03	Th:03 Practical: Pract:

Course Objectives:

- 1. To make the students conversant with kinematic analysis of mechanisms applied to real life and industrial applications.
- 2. To develop the competency to analyze the velocity and acceleration in mechanisms using analytical Method
- 3. To develop the competency to analyze the velocity and acceleration in mechanisms using graphical approach.
- 4. To develop the skill to propose and synthesize the mechanisms using graphical and analytical technique.
- 5. To develop the competency to understand & apply the principles of gear theory to design various applications.
- 6. To develop the competency to design a cam profile for various follower motions.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Apply kinematic analysis to simple mechanisms

CO2: Analyze velocity and acceleration in mechanisms by vector and graphical method

CO3: Synthesize a four bar mechanism with analytical Method

CO4: Synthesize a four bar mechanism with graphical methods

CO5: Apply fundamentals of gear theory as a prerequisite for gear design

CO6: Construct cam profile for given follower motion

2312207: Kinematics of Machinery

Units				
Unit 1	Fundamentals of Mechanism(7 Hrs.)	CO		
Kinematic	ink, Types of links, Kinematic pair, Types of constrained motions, Types of			
Kinematic p	airs, Kinematic chain, Types of joints, Mechanism, Machine, Degree of freedom,			
Mobility of Mechanism, Inversion, Grashoff's law, Four-Bar Chain and its Inversions, Slider				
crank Chain	and its Inversions, Double slider crank Chain and its Conversions, Mechanisms with	CO1		
Higher pairs	, Equivalent Linkages and its Cases - Sliding Pairs in Place of Turning Pairs, Spring			
in Place of T	urning Pairs, Cam Pair in Place of Turning Pairs			
Unit 2	Kinematic Analysis of Mechanisms: Analytical Method (7 Hrs.)			
Analytical	methods for displacement, velocity and acceleration analysis of slider crank			
Mechanism,	Velocity and acceleration analysis of Four-Bar and Slider crank mechanisms using	CO2		
Vector and	Complex Algebra Methods. Computer-aided Kinematic Analysis of Mechanism like			
Slider crank	and Four-Bar mechanism, Analysis of Single and Double Hook's joint			
Unit 3	Kinematic Analysis of Mechanisms: Graphical Method (7 Hrs.)			
Displacement, velocity and acceleration analysis mechanisms by Relative Velocity Method				
(Mechanism	s up to 6 Links), Instantaneous Centre of Velocity, Kennedy's Theorem, Angular	CO3		
Velocity rat	io Theorem, Analysis of mechanism by ICR method (Mechanisms up to 6 Links),			
Coriolis con	ponent of Acceleration (Theoretical treatment only)			
Unit 4	Synthesis of Mechanisms(7 Hrs.)			
Steps in S	ynthesis: Type synthesis, Number Synthesis, Dimensional synthesis, Tasks of			
Kinematic s	ynthesis - Path, function and motion generation (Body guidance), Precision Positions,			
Chebychev s	spacing, Mechanical and structural errors	CO4		
Graphical Synthesis: Inversion and relative pole method for three position synthesis of Four-Bar				
and Single Slider Crank Mechanisms				
Analytical	Synthesis: Three position synthesis of Four-Bar mechanism using Freudenstein's			
equation				
Unit 5	Kinematics of Gear (7 Hrs.)	C05		
Gear: Class	ifications	003		

2312207: Kinematics of Machinery

Spur Gear: Terminology, law of gearing, Involute and cycloidal tooth profile, path of contact,	l			
arc of contact, sliding velocity, Interference and undercutting, Minimum number of teeth to avoid				
interference, Force Analysis (theoretical treatment only)	l			
Helical and Spiral Gears (theoretical treatment only): Terminology, Geometrical Relationships,				
virtual number of teeth for helical gears	l			
Bevel Gear & Worm and Worm Wheel (theoretical treatment only): Terminology, Geometrical	1			
Relationships				
Gear Train: Types, Analysis of Epicyclic gear Trains, Holding torque - simple, compound and	1			
Epicyclic gear Trains, Torque on Sun and Planetary gear Train, compound Epicyclic gear Train	1			
Unit 6CAM and Follower(7 Hrs.)				
Cams & Followers: Introduction, Classification of Followers and Cams, Terminology of Cam				
Displacement diagram for the Motion of follower as Uniform velocity, Simple Harmonic Motion				
(SHM), Uniform Acceleration and Retardation Motion (UARM), Cycloid motion, Cam Profile				
construction for Knife-edge Follower and Roller Follower, Cam jump Phenomenon	l			

Text Books

- S. S. Rattan, "Theory of Machines", Third Edition, McGraw Hill Education (India) Pvt. Ltd., New Delhi.
- 2. Bevan T, "Theory of Machines", Third Edition, Longman Publication
- 3. G. Ambekar, "Mechanism and Machine Theory", PHI
- 4. J. J. Uicker, G. R. Pennock, J. E. Shigley, "Theory of Machines and Mechanisms", Fifth Edition, International Student Edition, Oxford.

- Paul E. Sandin, "Robot Mechanisms and Mechanical Devices Illustrated", Tata McGraw Hill Publication
- 2. Stephen J. Derby, "Design of Automatic Machinery", 2005, Marcel Dekker, New York

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-IV 2312207: Kinematics of Machinery

- Neil Sclater, "Mechanisms and Mechanical Devices Sourcebook", Fifth Edition, Tata McGraw Hill Publication
- 4. Ghosh Malik, "Theory of Mechanism and Machines", East-West Pvt. Ltd.
- 5. Hannah and Stephans, "Mechanics of Machines", Edward Arnolde Publication
- 6. R. L. Norton, "Kinematics and Dynamics of Machinery", First Edition, McGraw Hill Education (India) P Ltd. New Delhi
- 7. Sadhu Singh, "Theory of Machines", Pearson
- 8. Dr. V. P. Singh, "Theory of Machine", Dhanpatrai and Sons
- 9. C. S. Sharma & Kamlesh Purohit, "Theory of Machine and Mechanism", PHI.

2312208: Fluid Mechanics

Teaching Scheme:	Credits	Examinati	on Scheme	
Theory: 3 hrs/week	Th:03	Theory	CIA: 50	
Practical:	Practical:	Theory	End-Sem:50	
Prerequisite : Nil	Prerequisite : Nil			
		Oral:		
		Termwork		
Course Objectives:				
1. Identify various propertie	es of fluids and its use units.			
2. State and illustrate the ba	asics Fluid Statics			
3. To identify various types	s of flows			
4. Applications of Bernoull	i's Equation for various applications			
5. To identify the sources o	f energy and their conversions			
6. Identify and explain the	fluid properties and concepts of Boundary l	ayer, Drag, Lift.		
Course Outcomes:				
On completion of the cours	se, learner will be able to–			
CO1: Able to explain the eff	fect of fluid properties on a flow system.			
CO2: calculate the hydrosta	tic pressure and force on plane and curved s	surfaces		
CO3: Able to identify type of	of fluid flow patterns and describe continuit	y equation		
CO4: identify how to derive	basic equations and know the related assur	nptions.		
CO5: apply the equation of	the conservation of energy.			
CO6: apply the similitude co	oncept and set up the relation between a mo	del and a protot	ype	

2312208: Fluid Mechanics

	Units			
Unit 1	Properties of Fluid (7 Hrs.)	CO		
Definition	of fluid, density, specific weight, specific gravity, viscosity, viscosity laws, types			
of fluid and	measurement of viscosity, application based numerical on viscosity-flow through	CO1		
pipe, lubrication, parallel plates, rotating shafts etc., vapor pressure surface tension,				
capillarity,	compressibility			
Unit 2	Fluid Statics(7 Hrs.)			
Laws of flu	id statics: forces acting on fluid element, Pascal's law, hydrostatics law, Pressure			
measureme	nt:, piezometer, barometer, manometer - simple, inclined, differential, micro			
manometer	, inverted manometer ,	CO2		
Forces act	ing on surfaces immersed in fluid: total pressure and center of pressure on	CO2		
submerged	plane surfaces, curved surface submerged in liquid including numerical on dam			
gate, metac	enter and Metacentric height.			
Buoyancy:	flotation, stability of bodies			
Unit 3	Fluid Kinematics(7 Hrs.)			
Fluid Kin	ematics:- Flow description methods, types of flows, velocity and acceleration			
fields, cont	inuity equation in Cartesians coordinates in 1D & 3D flow, flow visualization	CO3		
(path line, s	stream line and streak line), stream tube, angularity, vorticity, stream function and			
velocity po	tential function, flow net			
Unit 4	Fluid Dynamics(7 Hrs.)			
Fluid Dyna	amics:- Euler's equation of motion differential form and Navier Stokes equation,			
Euler's equ	ation of motion along streamline, Bernoulli's theorem and modified Bernoulli's			
theorem, stagnation pressure, Flow measurement: venturimeter, orifice meter, pitot tubes,				
static pitot tube, orifices, notches				
Laminar and Turbulent flow physics, entrance region and fully developed flow. Velocity and				
shear Stres	s distribution for laminar flow in a pipe, fixed parallel plates and Couette flow,			
hydro dyna	mically smooth and rough boundaries, Velocity profile of Turbulent flow.			
1				

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech (Mechanical Engineering) (2023 Pattern) Sem-IV 2312208: Fluid Mechanics

Unit 5	Internal flows (7 Hrs.)			
Flow throu	gh Pipes: Laws of fluid friction for Laminar and Turbulent flow: Darcy's			
equation for	r Major/frictional losses, Minor losses in pipe fittings and valves, Hydraulic	CO5		
gradient line	e and total energy line(HGL, TEL), Pipes in series, Pipes in parallel and concept	COS		
of Equivaler	nt Pipe, Siphons, Transmission of Power (no derivations for minor losses, simple			
Numerical)				
Unit 6	External flows (7 Hrs.)			
Boundary l	Boundary layer theory: - Boundary layer formation for flow over Flat plate, boundary layer			
thickness:-d	isplacement, momentum and energy, Separation of Boundary Layer and Methods			
of Controllin	ng.			
Forces on immersed bodies: -Lift and Drag, flow around cylinder and aerofoil (Pressure distribution and Circulation).				
Dimensional Analysis: Dimensions of Physical Quantities, dimensional homogeneity, Buckingham π Theorem, important dimensionless numbers, Model analysis, Reynolds, Froude and Mach).				

Text Books

- 1. Sukumar Pati, "Fluid Mechanics and Hydraulics Machines", TATA McGraw Hill.
- 2. Modi P. N. and Seth S. M, "Hydraulics and Fluid Mechanics", Standard Book House.
- 3. Cengel & Cimbla, "Fluid Mechanics", TATA McGraw-Hill.
- 4. F. M. White, "Fluid Mechanics", TATA McGraw-Hill.
- 5. R. K. Bansal, "Fluid Mechanics & Hydraulic Machines", Laxmi Publication.
- 6. Theory of hydraulic Machinery, V. P. Vasandani.
- 7. Hydraulic Machines, J. Lal, Metropolitan Book.

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech (Mechanical Engineering) (2023 Pattern) Sem-IV 2312208: Fluid Mechanics

- 1. Kundu, Cohen, Dowling, "Fluid Mechanics", Elsevier India.
- 2. Chaim Gutfinger David Pnueli, "Fluid Mechanics" Cambridge University press.
- Edward Shaughnessy, Ira Katz James Schaffer, "Introduction to Fluid Mechanics", Oxford University Press.
- 4. Munson, Young and Okiishi, "Fundamentals of Fluid Mechanics", Wiley India.
- 5. Potter Wiggert, "Fluid Mechanics", Cengage Learning.
- 6. Fox, Pichard, "Introduction to Fluid Mechanics", McDonald- Wiley.

2312209: Engineering Materials and Metallurgy

Teaching Scheme:	Credits	Examinati	on Scheme
Theory: 2 hrs/week	Th:02	Theory	CIA: 25
Practical:	Practical:	Theory	End-Sem:50
Prerequisite : Nil	Pract:		
	Oral:		
		Termwork	

Course Objectives:

The objective of this course is to provide a comprehensive study on:

- 1. Engineering material, crystal structures, their properties and plastic deformation.
- 2. Solidification and phase diagrams.
- 3. Heat treatment processes.
- 4. Properties and applications of ferrous and non-ferrous materials.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Understand basic knowledge related to engineering materials and Calculate Atomic Packing Fraction (APF) of different Crystal structure.

CO2: Interpret phase diagram and make use of this knowledge to illustrate the Iron-Iron carbide equilibrium diagram.

CO3: Understand basic knowledge related to heat treatment process and Differentiate various heat treatment processes.

CO4: Identify and Differentiate ferrous & non-ferrous materials and their applications in formation of different alloys.

2312209: Engineering Materials and Metallurgy

Units				
Unit 1Basics of Engineering Materials(7 Hrs.)	CO			
Basics of engineering materials. Materials classification, material properties: mechanical,				
thermal and others. Study of crystal structure, imperfections in crystal, structure-property	CO1			
correlation of materials, indexing of lattice planes and directions, miller indices, Mechanism				
of plastic deformation: slip, dislocation & twinning.				
Unit 2Solidification and Phase Diagram(7 Hrs.)				
Study of solidification of pure metal, solid solution & their types, Formation of Alloy, Hume				
Rothery Rule, grain shape & size, its effect on the properties. Phase Diagrams, Phase rule,	CO2			
microstructural changes during cooling, Lever rule, Invariant reactions, Study of Fe Fe-C				
diagram - uses & limitations.				
Unit 3Heat Treatment Processes(7 Hrs.)				
Basics of Heat treatment of steel: Annealing, tempering, normalizing, spheroidising and				
hardening. Isothermal transformation diagrams for Fe-C alloys and microstructure				
development. Continuous cooling curves and interpretation of final microstructures and	CO3			
properties- austempering, martempering, case hardening, carburizing, nitriding, cyaniding,				
carbo-nitriding, flame and induction hardening, vacuum and plasma hardening, Jomini End				
Quench test for hardenability.				
Unit 4Ferrous and Non-ferrous alloys(7 Hrs.)				
Structure and properties of plain carbon steel, Effect of Impurities, Alloy steel, Effects of				
various alloying elements, Tool steel, Red hardness; Stainless steel; Hadfield Manganese				
steel, Maraging Steel, O.H.N.S. Steel, Selection of steel for various applications. Cast iron -				
Classification and properties, Ni - hard & Ni - Resist cast iron, Meehanite Alloy. Study of				
non- ferrous alloys – Brasses, its types, Cu-Zn diagram; Bronzes, its types, Cu-Sn diagram;				
Al-Si diagram.				

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-IV 2312209: Engineering Materials and Metallurgy

Text Books

- 1. Materials Science & Metallurgy, Dr. V. D. Kotgire, Everest Publishing House
- 2. Introduction to Physical Metallurgy, Sidney H. Avner, Tata McGraw-Hill
- 3. Introduction to Engineering Materials, B. K. Agrawal, Tata McGraw-Hill
- 4. Engineering Materials & Metallurgy, Srinivasan, Tata Mc-Graw Hill.

- 1. Materials Science, Willium Callister, John Wiley & Sons
- 2. Material Science, Narula & Gupta, Tata Mc-Graw Hill
- 3. Material Science & Metallurgy, Parashivamurthy, Pearson
- 4. A First course on Material Science, Raghavan, PHI Learning.

2312210: Mechatronics

Teaching Scheme:	Credits	Examinati	on Scheme
Theory: 2 hrs/week	Th:02	Theory	CIA: 25
Practical:	Practical:	Theory	End-Sem:50
Prerequisite : Nil	Pract:		
	Oral:		
		Termwork	

Course Objectives:

- 1. Understand the key elements of mechatronics, principle of sensor and its characteristics.
- Understand the concept of signal processing and use of interfacing systems such as ADC, DAC, Digital I/O.
- 3. Understand the block diagram representation and concept of transfer function.
- 4. Understand the system modeling and analysis in frequency domain.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Define key elements of mechatronics, principle of sensor and its characteristics.

CO2: Utilize concept of signal processing and MAKE use of interfacing systems such as ADC, DAC, Digital I/O.

CO3: Determine the transfer function by using block diagram reduction technique.

CO4: Evaluate Poles and Zero, frequency domain parameter for mathematical modeling for mechanical system.

2312210: Mechatronics

	Units	
Unit 1	Introduction to Mechatronics, Sensors & Actuators (07 Hrs.)	CO
Introduction	to Mechatronics and its Applications Measurement Characteristics	
(Static/Dyna	umic),	
Sensors: Ty	pes of sensors; Motion Sensors - Encoder (Absolute & incremental), Lidar, Eddy	
Current, Pro	ximity (Optical, Inductive, Capacitive), MEMS Accelerometer;	
Temperature	e sensor -Pyrometer, Infrared Thermometer; Force / Pressure Sensors - Strain	CO1
gauges, Pie	zoelectric sensor; Flow sensors - Electromagnetic, Ultrasonic, Hot-wire	COI
anemometer	; Color sensor – RGB type; Biosensors – Enzyme, ECG, EMG	
Actuators:	Servo motor; Hydraulic and Pneumatic (must be restricted to classification and	
working of	one type of linear and rotary actuator); linear electrical actuators Selection of	
Sensor & A	ctuator	
Unit 2	Data Acquisition and Signal Communication(07 Hrs.)	
Signal Com	nunication: Serial, Parallel; Synchronous, Asynchronous	
Introduction	to DAQ, Types, Components of a Data Acquisition System (Sensor, Signal	
conditioning	, processing, controlling and storage/display/action)	
Data Acqu	isition: Signal collection, Signal conditioning – Isolation& Filtering,	CO2
Amplificatio	on, Sampling, Aliasing, Sample and hold circuit, Quantization, Analog-to-digital	
converters (4 bit Successive Approximation type ADC), Digital-to-Analog converters (4 bit	
R2R type D	DAC), Data storage Applications: DAQ in Household ,Digital Pressure Gauge,	
Digital Flow	measurement, DVB Digital Video Broadcast, AM/FM	
Unit 3	Control systems & transfer function based modelling (07 Hrs.)	
Introduction	to control systems, need, Types- Open and Closed loop, Concept of Transfer	
Function, B	lock Diagram & Reduction principles and problems; Applications (Household,	CO3
Automotive, Industrial shop floor)		
Transfer Function based modeling of Mechanical, Thermal and Fluid system; Concept of		
Poles & Zer	os; Pole zero plot, Stability Analysis using Routh Hurwitz Criterion (Numerical	

Approach)		
Unit 4	Time and Frequency Domain Analysis(07 Hrs.)	
Time Doma	in Analysis - Unit step Response analysis via Transient response specifications	
(Percentage	overshoot, Rise time, Delay time, Steady state error etc.)	CO4
Frequency Domain Analysis – Frequency Domain Parameters - Natural Frequency, Damping		
Frequency and Damping Factor; Mapping of Pole Zero plot with damping factor, natural		
frequency a	nd unit step response ; Introduction to Bode Plot, Gain Margin, Phase Margin	

Text Books

- 1. William Bolton, Mechatronics: Electronics Control Systems in Mechanical and Electrical Engineering, 6th Ed, 2019.
- 2. K.P. Ramchandran, G.K. Vijyaraghavan, M.S. Balasundaram, Mechatronics: Integrated Mechanical Electronic Systems, Willey Publication, 2008.

- Alciatore and Histand, Introduction to Mechatronics and Measurement Systems, 5th Ed, 2019.
- 2. Bishop (Editor), Mechatronics An Introduction CRC 2006.
- 3. Mahalik, Mechatronics Principles, concepts and applications, Tata Mc-Graw Hill publication, New Delhi.
- 4. C.D.Johnson, Process Control Instrumentation Technology, Prentice Hall, New Delhi.
- 5. Bolton, Programmable Logic Controller, 4th Ed, Newnes, 2006.

2312211: Kinematics of Machinery Lab

Teaching Scheme:	Credits	Examinati	Examination Scheme	
Theory:	Th:	Theorem	CIA:	
Practical: 2 hrs/week	Practical: 01	Theory	End-Sem:	
Prerequisite : Nil		Pract:		
		Oral:	25	
		Termwork		
Course Objectives:				

1. To make the students conversant with kinematic analysis of mechanisms applied to real life and industrial applications.

- 2. To develop the competency to analyze the velocity and acceleration in mechanisms using analytical Method
- 3. To develop the competency to analyze the velocity and acceleration in mechanisms using graphical approach.
- 4. To develop the skill to propose and synthesize the mechanisms using graphical and analytical technique.
- 5. To develop the competency to understand & apply the principles of gear theory to design various applications.
- 6. To develop the competency to design a cam profile for various follower motions.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Apply kinematic analysis to simple mechanisms

CO2: Analyze velocity and acceleration in mechanisms by vector and graphical method

CO3: Synthesize a four bar mechanism with analytical Method

CO4: Synthesize a four bar mechanism with graphical methods

CO5: Apply fundamentals of gear theory as a prerequisite for gear design

CO6: Construct cam profile for given follower motion

2312211: Kinematics of Machinery Lab

Practical Wo	ork:-	
The student	shall complete the following Experiments as a Lab Work.	
Expt. No. 1	To make a model of any mechanism by using waste material by the group of 4 to 6 students and to give a presentation using PPTs.	CO1
Expt. No. 2	Speed and torque analysis of epicyclic gear train to determine holding torque.	CO5
Expt. No. 3	To study and verify cam jump phenomenon.	CO6
Expt. No. 4	To study manufacturing of gear using gear generation with rack as a cutter and to generate an involute profile.	CO1
Expt. No. 5	To solve two problems on velocity and acceleration analysis using relative velocity and acceleration method.	CO3
Expt. No. 6	To solve two problems on velocity analysis using the ICR method.	CO3
Expt. No. 7	To study various types of gearboxes.	CO5
Expt. No. 8	To draw cam profile for any two problems with combination of various follower motion with radial and off-set cam.	CO6

Text Books

- 1. S. S. Rattan, "Theory of Machines", Third Edition, McGraw Hill Education (India) Pvt. Ltd., New Delhi.
- 2. Bevan T, "Theory of Machines", Third Edition, Longman Publication
- 3. G. Ambekar, "Mechanism and Machine Theory", PHI
- 4. J. J. Uicker, G. R. Pennock, J. E. Shigley, "Theory of Machines and Mechanisms", Fifth Edition, International Student Edition, Oxford.

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-IV 2312211: Kinematics of Machinery Lab

- Paul E. Sandin, "Robot Mechanisms and Mechanical Devices Illustrated", Tata McGraw Hill Publication
- 2. Stephen J. Derby, "Design of Automatic Machinery", 2005, Marcel Dekker, New York
- Neil Sclater, "Mechanisms and Mechanical Devices Sourcebook", Fifth Edition, Tata McGraw Hill Publication
- 4. Ghosh Malik, "Theory of Mechanism and Machines", East-West Pvt. Ltd.
- 5. Hannah and Stephans, "Mechanics of Machines", Edward Arnolde Publication
- 6. R. L. Norton, "Kinematics and Dynamics of Machinery", First Edition, McGraw Hill Education (India) P Ltd. New Delhi
- 7. Sadhu Singh, "Theory of Machines", Pearson
- 8. Dr. V. P. Singh, "Theory of Machine", Dhanpatrai and Sons
- 9. C. S. Sharma & Kamlesh Purohit, "Theory of Machine and Mechanism", PHI.

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-IV 2312212: Fluid Mechanics Lab

Credits **Examination Scheme Teaching Scheme:** CIA: --Theory: --Th:--Theory Practical: 01 Practical: 2 hrs/week End-Sem: --**Prerequisite : Nil** Pract: ___ 25 **Oral:** Termwork ---**Course Objectives:** 1. Identify various properties of fluids and its use units. 2. State and illustrate the basics Fluid Statics 3. To identify various types of flows 4. Applications of Bernoulli's Equation for various applications 5. To identify the sources of energy and their conversions 6. Identify and explain the fluid properties and concepts of Boundary layer, Drag Lift. **Course Outcomes:** On completion of the course, learner will be able to-**CO1:** Able to explain the effect of fluid properties on a flow system. CO2: Calculate the hydrostatic pressure and force on plane and curved surfaces CO3: Able to identify type of fluid flow patterns and describe continuity equation **CO4:** Identify how to derive basic equations and know the related assumptions. **CO5:** Apply the equation of the conservation of energy. CO6: Apply the similitude concept and set up the relation between a model and a prototype

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-IV 2312212: Fluid Mechanics Lab

Practical Wo	ork:-	
The student	shall complete the following Experiments as a Lab Work.	
	Group -A	
Expt. No. 1	Determination of fluid viscosity and its variation with temperature	CO1
Expt. No. 2	Determination of pressure using manometers (minimum two)	CO2
Expt. No. 3	Determination of Metacentric height of floating object	CO2
Expt. No. 4	Verification of modified Bernoulli's equation.	CO4
Expt. No. 5	Calibration of Orifice meter/ Venturimeter.	CO4
Expt. No. 6	Calibration of Notch	CO4
Expt. No. 7	Determination of minor/major losses through metal/non-metal pipes.	CO5
Expt. No. 8	Determination of Reynolds number and flow visualization of laminar and turbulent flow using Reynolds apparatus.	CO5
	Group -B	
Visit	Mini project/Industrial visit/Simulation of fluid flow/Programming using any suitable software. (Industrial Visit to Hydro power Plant/Pumping Station.)	CO5,CO6

Text Books

- 1. Sukumar Pati, "Fluid Mechanics and Hydraulics Machines", TATA McGraw Hill.
- 2. Modi P. N. and Seth S. M, "Hydraulics and Fluid Mechanics", Standard Book House.
- 3. Cengel & Cimbla, "Fluid Mechanics", TATA McGraw-Hill.
- 4. F. M. White, "Fluid Mechanics", TATA McGraw-Hill.
- 5. R. K. Bansal, "Fluid Mechanics & Hydraulic Machines", Laxmi Publication.
- 6. Theory of hydraulic Machinery, V. P. Vasandani.
- 7. Hydraulic Machines, J. Lal, Metropolitan Book.

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-IV 2312212: Fluid Mechanics Lab

- 1. Kundu, Cohen, Dowling, "Fluid Mechanics", Elsevier India.
- 2. Chaim Gutfinger David Pnueli, "Fluid Mechanics" Cambridge University press.
- 3. Edward Shaughnessy, Ira Katz James Schaffer, "Introduction to Fluid Mechanics", Oxford University Press.
- 4. Munson, Young and Okiishi, "Fundamentals of Fluid Mechanics", Wiley India.
- 5. Potter Wiggert, "Fluid Mechanics", Cengage Learning.
- 6. Fox, Pichard, "Introduction to Fluid Mechanics", McDonald- Wiley.

Teaching Scheme:	Credits	Examinati	Examination Scheme	
Theory: 2 hrs/week	Th:02	Theory	CIA: 25	
Practical:	Practical:	Theory	End-Sem: 50	
Prerequisite : Nil		Pract:		
		Oral:		
		Termwork		

Course Objectives:

- 1. To make students aware with fundamentals of robotics, components of a robotic system, types of manipulators, degree of freedom of a manipulator, robot specifications etc.
- 2. To make students understand the kinematics of a robotic system in order to plan required positioning and orientation.
- 3. To develop skills so that students can analyze for appropriate trajectories for motion of a manipulator and solve for joint torques using robot dynamics.
- 4. To develop skills so that students can implement PID controller with mechanisms.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Differentiate between types of robots, interpret the system for mobilities

CO2: Apply the knowledge to specify a robot based on requirement

CO3: Design a robotic manipulator with respect to kinematic analysis depending on the expected mobilities (degrees of freedom).

CO4: Select appropriate trajectory based on work space requirements

Units	
Basics of robotics (7 Hrs.)	СО
Introduction to robotics, history of robotics, components of a robotic system, types of joints, types of manipulators, degree of freedom of different manipulators, classification of robots, work-space of robots, types of end effectors, concept of resolution, accuracy and repeatability, robot teaching methods, specification of robots.	CO1
Robot Coordinate Systems & Work Space(7 Hrs.)	CO2
Types of Robot Coordinate Systems: Cartesian, Cylindrical, Spherical, Derivation of transformation matrix for different coordinate system, Methods of specifying orientation, design of serial manipulator mechanism based on workspace requirements.	
Kinematics of robots(7 Hrs.)	CO3
Representation of an object in 3D space, frame transformation, composite rotation matrix, representation of frame in other systems (position in cylindrical, spherical and orientation in roll, pitch and yaw and Euler Angles system), Denavit-Hartenberg notations, forward and inverse kinematics, velocity analysis.	
Trajectory planning (7 Hrs.)	CO4
Slope, deflection and radius of curvature, Relation between slope, deflection and radius of curvature, Derivation of differential equation of elastic curve, Double integration method, Macaulay's method, Castigliano's theorem.	

Text Books

- 1. Fundamental of Robotics by D.K. Pratihar, Narosa Publications.
- 2. Robotics by K.S. Fu, R. Gonzalez and C.S.G. Lee, Mc Graw Hill Publications.
- 3. Introduction to Robotics by J.J. Craig, Pearson Education Publications.

- 1. Industrial Robotics by M.P. Groover, Mc Graw Hill Publications.
- 2. Robotics for Engineers by Y. Koren, Mc Graw Hill Publications.
- 3. Robotics Engineering, Richard D. Klafter, PHI.

2312213B: Automation in Manufacturing

Teaching Scheme:	Credits	Examinati	Examination Scheme	
Theory: 2 hrs/week	Th:02	Theory	CIA: 25	
Practical:	Practical:	— Theory	End-Sem: 50	
Prerequisite : Nil	Pract:			
		Oral:		
		Termwork		

Course Objectives:

- 1. To develop the understanding of basic automation theory.
- 2. To understand industrial automation.
- 3. To classify different production line system.
- 4. To identify modern techniques used in the field of automation.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Understand the fundamentals of automation theory.

CO2: Develop the numerical control part program and explain its role in automation.

CO3: Examine the performance of material handling systems using analytical methods.

CO5: Explain the various methods of automated inspection and the concepts of group technology.

2312213B: Automation in Manufacturing

Units	
Introduction to Automation (7 Hrs.)	CO
Definition, types, reasons, strategies, organization, and information processing in manufacturing. Automated flow lines, methods of work part transport, buffer storage. Analysis of flow lines: analysis of transfer lines without storage, partial automation, and manual assembly lines. Assembly line balancing, methods of line balancing. (Largest Candidate rule & Ranked Position Weighted Method)	CO1
Numerical Control Production Systems(7 Hrs.)	CO2
Basic concepts, coordinate system, and machine motion. Types of NC systems, tape and tape readers, tape formats, methods of part programming, manual part programs (NC words): APT programming, computer numerical control, directed numerical control, and applications of NC.	
Automated Material Handling and Storage(7 Hrs.)	CO3
Automated inspection principles & methods, off-line & on -line inspection, distributed inspection & final inspection, sensor technologies, automated inspection, coordinate. Measuring machine construction, operation & benefits, machine vision image acquisition & digitization, image processing & analysis, interpretation, machine vision applications, group technology: part families, parts classification & coding, Optiz classification systems production. Flow analysis; machine cell design composite pat concept, types of cell design, best machine arrangement, benefits of group technology.	
Automated Inspection & Group Technology(7 Hrs.)	CO4
Automated inspection principles & methods, off-line & on -line inspection, distributed inspection & final inspection, sensor technologies, automated inspection, coordinate. Measuring machine construction, operation & benefits, machine vision image acquisition & digitization, image processing & analysis, interpretation, machine vision applications, group technology: part families, parts classification & coding, Opitz classification systems production. Flow analysis; machine cell design composite pat concept, types of cell design, best machine arrangement,	

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-IV 2312213B: Automation in Manufacturing

benefits of group technology.

Text Books

- 1. Automation, production System & CIMS, M. P. Groover, 4th Edition 2014, Prentice Hall of India.
- 2. Industrial Robotics, M. P. Groover, Roger N. Nagel, 2nd Edition 2017, Mc Grow-Hill.
- NC Machines, M. Adithan & B. S. Pabla, 3rd Edition 2018, New Age International Publications New Delhi.

- 1. CAD/CAM: M. Groover& E. Zimmers, 6th Edition 2014, Pearson Education.
- Industrial Engg. & Production Management, Martand Telsang, Revised Edition 2018, S. Chand Publications.
- Computer Control of Manufacturing Systems, Yoram Koren, 1st Edition 2017, McGraw Hill.

Sem-IV

2300205A : German Language

Teaching Scheme:	Credits	Examinati	Examination Scheme	
Theory: 2 hrs/week	Th:02	Theory	CIA: 25	
Practical: Nil		— Theory	End-Sem:50	
		Pract:		
		Oral:		
		Termwork		

Course Objectives: The student should be able to

- 1. Understand grammar & structure of the German language and use it in daily basic conversations and communication
- 2. Speak and write German language
- 3. Critically think in German

Course Outcomes:

On completion of the course, learner will be able to-

- **CO1:** do the proper pronunciation of the sounds of the German language
- **CO2:** understand a basic vocabulary
- **CO3:** comprehend the basic grammatical structures.
- **CO4:** understand German that is spoken at a moderate conversational speed andthat deals with everyday topics and will be able to engage in simple conversations in everydaysituations.
- **CO5:** demonstrate that they can think critically, read& write with a basic knowledge of non-technical German

Sem-IV

2300205A : German Language

Module 1: Introduction7Hrs	CO
Greetings, Introduction To Basic Phonetics; Writing System; Tones; Spelling Rules, Introducing Oneself And Others, Talk About Family and Family Members, Express likes and dislikes, Hobbies, Asking For Personal Information, Talking About Date, Month, Year, Talking About Time, Talking About Age	CO1
Module 2: Grammar7Hrs	
Alphabet- Numerals - Nominal Classifiers – Sentences with Adjectival Predicate – Names of Countries and places- Personal Pronoun- Interrogative Sentences - Structural Particle - Verbs and Verb Conjugation – Articles- Singular and Plural- Prepositions – Negative articles – Ja/Nein and W-Fragen (Yes/No and W- Questions) - Negation – Adjective- Possessive Article – Nominative and Accusative cases – Writing notes, SMS and filling up forms- Listen and Understand Telephonic Conversation and Conversations at specific places- Songs and Quiz	CO1 , CO2, CO3
Module3: Oral Communication7Hrs	CO4,
Stellungnahme (Taking a particular stance on a given topic)/ Debate/ Discussions/ Interview/ Role play/ group discussion/ Narration, interview skills etc.	CO4, CO5
Module4:Writing Communication7Hrs	CO1 &
Writing skills: Formal and Informal letters, Email, SMS blogs, Essays, Report, Article, statistical Analysis, book/Film review etc	CO1 & CO5

Text Books:

- 1. Kraft, Wolfgang S. Deutsch Aktuell 1, 7th edition (2017). St. Paul: EMC/ParadigmPublishing. ISBN 978-0-8219-8076-7
- Kraft, Wolfgang S. Deutsch Aktuell 1 Workbook, 7th edition (2017). St. Paul:EMC/Paradigm Publishing. ISBN 978-0-8219-8078-1

- 1. Funk, Hermann u.a. (hrsg.): Studio D A1. Deutsch AlsFremdsprache. Kurs Und Übungsbuch.Cornelsen and GOYAL SaaB. , 2009.
- 2. Funk, Hermann, u.a. (hrsg.): Studio D A1. Deutsch AlsFremdsprache. Sprachtraining. Cornelsenand GOYAL SaaB. , 2009.
- 3. Hirschfeld, Ursula, Reinke, Kerstin, Stock, Eberhard (hrsg.): Phonothekintensiv. München.Langenscheidt, 2007.
- 4. Studio 21 A1 Glossardeutsch-englisch, CornelsenVerlag, Berlin, 2013.
- 5. Tangram aktuell 1, Max HueberVerlag, Ismaning 2005 and GOYAL Publishers, Delhi2005.
- 6. Swick, Ed: Complete German Grammar.Mcgraw-Hill Publ. Comp. New York City, 2012.
- 7. Evans, Richard J.: Rereading German History, 1800-1996. From Unification to
- 8. Reunification.Routledge.London& New York, 1997.
- 9. Fraser, Catherine C. & Hoffmann, Dierk O. (hrsg.): Pop Culture in Germany! Media, Art andLifestyle.ABC-CLIO.England, 2006.

Sem-IV

2300205B : French Language

Teachi	ng Scheme:	Credits	Examinati	on Scheme
Theory	7: 2 hrs/week	Th:02	Theorem	CIA: 25
Practic	al: Nil		Theory	End-Sem:50
	·		Pract:	
			Oral:	
			Termwork	
Course	Objectives: The stude	nt should be able to		
1.	Understand grammar & conversations and comm	structure of the French language and us nunication	se it in daily basi	c
2.	Speak and write French	language		
3.	Critically think in Frenc	ch		
	e Outcomes: npletion of the course, l	earner will be able to–		
CO2: CO3:	understand a basic vocal comprehend the basic gr	-		ls with
CO5:		be able to engage in simple conversation n think critically, read& write with a b	• •	

technical French

Sem-IV

2300205B : French Language

Module 1: Introduction 7Hrs	CO
Greetings, Introduction To Basic Phonetics; Writing System; Tones; Spelling Rules, Introducing Oneself And Others, Talk About Family and Family Members, Express likes and dislikes, Hobbies, Asking For Personal Information, Talking About Date, Month, Year, Talking About Time, Talking About Age	CO1
Module 2: Grammar7Hrs	
Alphabet- Numerals - Nominal Classifiers - Sentences with Adjectival Predicate - Names	
of Countries and places- Personal Pronoun- Interrogative Sentences - Structural Particle -	CO1,
Verbs and Verb Conjugation – Articles- Singular and Plural- Prepositions – Negative	СО2,
articles Negation - Adjective- Possessive Article - Nominative and Accusative cases -	CO3
Writing notes, SMS and filling up forms- Listen and Understand Telephonic Conversation	
and Conversations at specific places- Songs and Quiz	
Module3:Oral Communication7Hrs	CO4,
Stellungnahme (Taking a particular stance on a given topic)/ Debate/ Discussions/	CO4, CO5
Interview/ Role play/ group discussion/ Narration, interview skills etc.	005
Module4:Writing Communication 7Hrs	CO1,
Writing skills: Formal and Informal letters, Email, SMS blogs, Essays, Report, Article,	CO1, CO5
statistical Analysis, book/Film review etc	COS

Text Books:

- 1. Alter Ego, A1 (ISBN: 9782011554208); Publisher: Hachette; Author: Annie Berthet, Catherine Hugot et al.; Published: 2006;
- 2. Alter Ego, A1 Cahier d'activités A1 (ISBN: 9782011558114); Publisher: Hachette; Author:Annie Berthet, Catherine Hugot et al.; Published: 2006

- 1. Écho (2e edition), A1 (ISBN: 9782090385885); Publisher: CLE International; Authors: Jacky Girardet, Jacques Pecheur; Published: 2013
- Écho (2e edition), A1 Cahier personnel d'apprentissage (ISBN: 9782090385892); Publisher: CLE International; Authors: Jacky Girardet, Jacques Pecheur; Published: 2013.

2300206:Industrial Economics

Teaching Scheme:	Credits	Examination	Examination Scheme	
Theory: 2hrs/week	Th:02	Theory	CIA: 25	
		Theory	End-Sem:50	
		Pract:		
		Oral:		
		Term work		

Course Objectives: The student should be able to

- 1. Upon completion of the course, students will gain comprehensive knowledge of industrial organization, serving as a cornerstone for exploring various interconnected fields within the industry.
- 2. Students will develop a profound understanding of how firms interact within the economy, encompassing areas such as business strategy, corporate finance, marketing, international trade, banking, and organizational economics.
- 3. The course will offer insights into the historical progression of industrial economies, with a primary focus on contemporary advancements in studying firms' behavior.
- 4. By the end of the curriculum, learners will be equipped with a holistic perspective on industrial organization, paving the way for exploration into numerous other disciplines linked to the industrial sector.

Course Outcomes:

On completion of the course, learner will be able to-

- **CO1:** Including its definition, scope, and economic significance in various sectors.
- **CO2:** Learners will recognize the importance of studying Industrial Economics and its role in economic analysis, decision-making, and influencing diverse fields such as marketing, finance, and international trade.
- **CO3:** analyze the interplay between economic development and industrialization, as well as the impact of industrialization on the agricultural sector.
- **CO4:** Learners will identify and assess key factors influencing industrial development, considering socioeconomic and political influences on industrial growth.
- **CO5:** By the end of the course, students will comprehend the dynamics of competition and cooperation among firms, their implications on industrial outcomes, and the strategies like mergers, takeovers, and acquisitions.
- **CO6:** Learners will be equipped to analyze industrial location decisions, determine the determinants of industrial location, and evaluate theories like Weber's and Florence's to understand industrial location patterns.

Sem-IV

2300206:Industrial Economics

Unit 1 - Introduction to Industrial Economics7hrs	CO
Definition of Industrial Economics and its scope of study, Understanding the industrial sector's economic significance, Importance of Industrial Economics, Need and Significance of Studying Industrial Economics, Role of Industrial Economics in Economic Analysis, Economic Development, Agricultural Development, and Industrialization, Interplay between Economic Development and Industrialization, Impact of Industrialization on Agricultural Sector, Factors Influencing Industrial Development, Analysis of Key Factors Affecting Industrial Growth, Socioeconomic and Political Factors in Industrial Development.Unit 2- Industrial Decisions and Market Structure.7hrsCompetition and Cooperation in Industries, The concept of Competition and Cooperation among Firms, Implications of Different Approaches on Industrial Outcomes, Firm Behavior and Market Outcomes, Understanding Firm Behavior under Different Market Structures, Relationship between Firm Behavior and Market Outcomes, Cartels, Collusion, Mergers, Takeovers, and Acquisitions, Overview of Cartels and Collusion in Industries, Merger, Takeover, and Acquisition Strategies.	CO1, CO2 CO3, CO4
Unit 3- Price Competition and Pricing Strategies7hrs	
Factors Influencing Pricing Decisions, General Considerations for Pricing Decisions in Various Industries, Market Conditions and Pricing Strategies, Pricing under Perfect & Imperfect Competition: Theoretical Perspectives, Pricing Strategies in Perfectly Competitive Markets, Pricing Challenges in Imperfectly Competitive Markets, Pricing Procedures and Methods in Practice, Practical Approaches to Pricing Decisions, Comparative Analysis of Pricing Methods, Pricing in Public Enterprises, Pricing Policies and Practices in Public Sector Enterprise, Economic and Social Implications of Public Enterprise Pricing, Price Wars: Theories and Empirical Evidence, Theoretical Explanations of Price Wars, Empirical Evidence and Impact on Industries	CO5
Unit 4 - Non-Price Competition and Product Differentiation7hrs	
Non-Price Competition and Product Differentiation, Understanding Non-Price Competition and Product Differentiation, Importance of Product Differentiation in Competitive Markets, Horizontal Product Differentiation, Analysis of Horizontal Product Differentiation and Consumer Behavior, Case Studies and Examples, Brand Proliferation as an Entry Deterrence Strategy, The Role of Brand Proliferation in Deterring New Entrants, Evaluation of Effectiveness and Challenges, Vertical Product Differentiation, Explanation of Vertical Product Differentiation and its Implications, Comparison with Horizontal Differentiation, Price Discrimination: First-, Second-, and Third-Degree Price Discrimination.	CO6

Text Books:

- 1. "Modern Small Industry in India" -R. K. Vepa
- 2. "Problems of Accountability of Public Enterprises in India" M. P. Srivastava
- 3. "Economic Development Perspectives, Vol. 3, Public Enterprises and Performance" -Binode Mohanty
- 4. "Public Enterprises in India Principles and Performance" V. K. L. Srivastava

Reference Books / Reading:

- 1. "Industrial Economics Issues and Perspectives"- Paul R. Ferguson and Glenys J. Ferguson
- 2. "The Economics of Industrial Organization" William G. Shepherd
- 3. "Modern Small Industry for Developing Countries"- E. Staley and R. Morse
- 4. "Indian Growth and Stagnation The Debate in India" A. V. Desai

2312702: Refrigeration System Maintenance

Teaching Scheme:	Credits	Examinati	Examination Scheme	
Theory:	Th:	Theory	CIA:	
Practical: 2 hrs/week	Practical: 01		End-Sem:	
Prerequisite : Nil		Pract:	25	
		Oral:		
		Termwork		

Course Objectives:

- 1. The concepts, principles of working of RAC systems.
- 2. The knowledge of testing procedure of components used in RAC and making use of different test instruments.
- 3. The concepts and principles used in RAC Systems and its maintenance.
- 4. To locate the fault at component level and at the stage level.
- 5. Study of the safety controls employed in refrigeration air conditioning systems.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Illustrate the fundamental principles and applications of refrigeration and air conditioning system.

CO2: Obtain cooling capacity and coefficient of performance by conducting test on vapour compression refrigeration systems.

CO3: Present the properties, applications and environmental issues of different refrigerants

CO4: Calculate cooling load for air conditioning systems used for various applications

CO5: Operate and analyze the refrigeration and air conditioning systems

2312702: Refrigeration System Maintenance

Practical Wo	ork:-	
The student s	shall complete the following activity as a practical work.	
	Group -A	
Expt. No. 1	Testing of a refrigeration system to find out: (a) Refrigerating capacity (b) Power input (c) C.O.P.	CO1
Expt. No. 2	Air removal and charging of a refrigeration unit.	CO2
Expt. No. 3	Leak detection in refrigeration system by different methods.	CO3
Expt. No. 4	Determination of psychrometric properties of air with the help of a sling psychrometer and aspiration psychrometer.	CO4
Expt. No. 5	Determination of bye pass factor of a cooling coil.	CO2 CO4
Expt. No. 6	Determination of humidifying efficiency of an evaporative cooler.	CO3 CO4
Expt. No. 7	Determination of cooling load for a specified situation.	CO5
	Group -B	
Visit	Study of the following system by visit: (a) Ice Plant (b) Cold storage plant(c) Control air conditioning system	CO4,CO5

Text Books

- 1. Arora C. P., Refrigeration and Air Conditioning, Tata McGraw-Hill.
- 2. Manohar Prasad, Refrigeration and Air Conditioning, Willey Eastern Ltd, 1983.
- Mc Quiston, Heating Ventilating and air Conditioning: Analysis and Design 6th Edition, Wiley India.
- 4. Arora and Domkundwar, Refrigeration & Air Conditioning, Dhanpatrai& Company, New Delhi.
- Khurmi R.S. and Gupta J.K., Refrigeration and Air conditioning, Eurasia Publishing House Pvt. Ltd, New Delhi,1994.
- 5. Ballaney P.L., Refrigeration and Air conditioning, Khanna Publishers, New Delhi, 1992.

Reference Books

1. Dossat Ray J, Principles of refrigeration, S.I. version, Willey Eastern Ltd, 2000

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-IV 2312702: Refrigeration System Maintenance

- 2. Stockers W.F and Jones J.W., Refrigeration and Air conditioning, McGraw Hill International editions 1982.
- 3. Threlkeld J.L, Thermal Environmental Engineering, Prentice Hall Inc., New Delhi.
- 4. Aanatnarayan, Basics of refrigeration and Air Conditioning, Tata McGraw Hill Publications.
- 5. Roger Legg, Air Conditioning System Design, Commissioning and Maintenance.
- 6. ASHRAE & ISHRAE handbook.

2312802: Preventive Maintenance in Bearings

Teaching Scheme:	Credits	Examinati	on Scheme
Theory:	Th:		CIA:
Practical:	Practical:		End-Sem:
Prerequisite : Nil		Pract:	
		Oral:	
		Termwork	
Course Objectives:			
1 0	out failure prevention in bearings.		
Course Outcomes:			
Course Outcomes: On completion of the cours	se, learner will be able to–		
On completion of the cours	se, learner will be able to– tance of inspection of bearings.		
On completion of the cours	tance of inspection of bearings.		
On completion of the course CO1: Understand the import	tance of inspection of bearings. onditions after usage.		

2312802: Preventive Maintenance in Bearings

Modules	Topics covered	СО
1	Inspection of Bearing	CO1
	Inspection of a machine's bearings during operation is important to	
	prevent unnecessary bearing failure. The following methods are	
	generally adopted to inspect the bearing.	
	a) Inspection when machine is running	
	b) Inspection of bearings after operation	
	(3 Hrs.)	
2	Check Bearing after Operation	CO2
	Bearings after operation and those removed during periodic inspection	
	should be carefully checked visually for symptoms on each component to	
	evaluate whether the bearings' operating conditions are satisfactory. If	
	any abnormality is detected, find the cause and apply a remedy by	
	checking the abnormality against the failure cases.	
	(4 Hrs.)	
3	Bearing Failures	CO3
	The bearing is generally usable up to the end of the rolling fatigue life if	
	handled properly. If it fails earlier, it may be due to some fault in the	
	handled properly. If it fails earlier, it may be due to some fault in the selection, handling, lubrication, and/or mounting of the bearing. It is	
	selection, handling, lubrication, and/or mounting of the bearing. It is	
	selection, handling, lubrication, and/or mounting of the bearing. It is sometimes difficult to determine the real cause of bearing failure because	
	selection, handling, lubrication, and/or mounting of the bearing. It is sometimes difficult to determine the real cause of bearing failure because many interrelated factors are possible. It is, however, possible to prevent	
	selection, handling, lubrication, and/or mounting of the bearing. It is sometimes difficult to determine the real cause of bearing failure because many interrelated factors are possible. It is, however, possible to prevent the recurrence of similar problems by considering possible causes	
	selection, handling, lubrication, and/or mounting of the bearing. It is sometimes difficult to determine the real cause of bearing failure because many interrelated factors are possible. It is, however, possible to prevent the recurrence of similar problems by considering possible causes according to the situation and condition of the machine on which the	
	selection, handling, lubrication, and/or mounting of the bearing. It is sometimes difficult to determine the real cause of bearing failure because many interrelated factors are possible. It is, however, possible to prevent the recurrence of similar problems by considering possible causes according to the situation and condition of the machine on which the bearings failed. Also, installation location, operating conditions, and	
4	selection, handling, lubrication, and/or mounting of the bearing. It is sometimes difficult to determine the real cause of bearing failure because many interrelated factors are possible. It is, however, possible to prevent the recurrence of similar problems by considering possible causes according to the situation and condition of the machine on which the bearings failed. Also, installation location, operating conditions, and surrounding structure of the bearings should be taken into consideration.	CO4

Sem-IV

2312802: Preventive Maintenance in Bearings

2. Operating Sound of Bearing		
3. Vibration in Bearing		
4. Lubricant Selection (grease or oil)		
5. Relubrication	(4 Hrs.)	
Expectations:		

Students shall submit a report based on the above modules for the assessment of this course.

Text Books:-

- 1. Rolling Bearing Tribology- Tribology and Failure Modes of Rolling Element Bearings (2022), Gary Doll by Elsevier Science.
- 2. Bearings Basic Concepts and Design Applications (2018), Maurice L. Adams by CRC Press.

Reference Books:-

- 1. Advanced Concept of Bearing Technology: Rolling Bearing by Tedric A. Harris, Taylor and Francis.
- 2. Journal Bearing Handbook (2013), J. Mitsui, J. Esaki, S. Saito, Y. Kanemitsu, by Springer Berlin Heidelberg.

Text Books

- 1. Rolling Bearing Tribology- Tribology and Failure Modes of Rolling Element Bearings (2022), Gary Doll by Elsevier Science.
- 2. Bearings Basic Concepts and Design Applications (2018), Maurice L. Adams by CRC Press

Reference Books

- 1. Advanced Concept of Bearing Technology: Rolling Bearing by Tedric A. Harris, Taylor and Francis.
- 2. Journal Bearing Handbook (2013), J. Mitsui, J. Esaki, S. Saito, Y. Kanemitsu, by Springer Berlin Heidelberg.

2300207: Industrial Work Study

Teaching Scheme:	Credits	Examinati	Examination Scheme	
Theory: 2 hrs/week	Th:02	Theory	CIA: 25	
Practical:	Practical:	— Theory	End-Sem:50	
Prerequisite : Nil		Pract:		
		Oral:		
		Termwork		

Course Objectives:

1. To teach students about how to measure work, optimize methods and fix pay accordingly.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Explain different method study procedures and can implement them for optimizing work approaches.

CO2: Evaluate the work content and can fix standard time for performing work.

CO3: Analyze the data through work sampling.

CO4: Design the plans for fixing incentive and wages based on performance.

2300207: Industrial Work Study

	Units	
Unit 1	Method Study (7 Hrs.)	CO
Purpose of	work study, its objectives, procedure and applications; method study definition	
and basic pr	ocedure, selection of job, various recording techniques like outline process charts,	
flow proces	s charts, man machine charts, two handed process charts, string diagram, flow	
diagram, n	nultiple activity chart, simo, cyclographs and chrono-cyclographs; critical	CO1
examination	, development, installation and maintenance of improved method; principles of	
motion econ	nomy and their application in work design; micro motion study, memo motion	
study and th	eir use in methods study.	
Unit 2	Work Measurement (7 Hrs.)	
Introduction	& definition, objectives and basic procedure of work measurement; application	
of work me	asurement in industries; time study: basic procedure, equipment needed, methods	CO 2
of measurin	g time, selection of jobs, breaking a job into elements; numbers of cycles to be	CO2
timed; rating	g and methods of rating, allowances, calculation of standard time.	
Unit 3	Work Sampling (7 Hrs.)	
Basic proce	dure, design of work sampling study, conducting work sampling study and	CO3
establishme	nt of standard-time.	
Unit 4	Job Evaluation and Incentive Schemes(7 Hrs.)	
Starlight lin	e, Tailor, Merrick and Gantt incentive plans, Standard data system; elemental and	CO4
non-elemen	tal predetermined motion systems, work factors system; Methods, Time	004
Measuremen	nt (MTM), MOST	

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech(Mechanical Engineering) (2023 Pattern) Sem-IV 2300207: Industrial Work Study

Text Books

- 1. Barrnes RM; Motion and Time Study; Wiley Publications.
- 2. Currie RM; Work study; BIM publications.

Reference Books

- 1. Mynard; Hand book of Industrial Engineering.
- 2. Telsang, M.; Industrial Engineering and Production Management, S. Chand Publishers.
- 3. ILO; work-study; International Labour Organization.

Sem-IV

VAC122: Geometric Dimensioning & Tolerancing (GD&T)

Teaching Scheme:	Credits	Examinati	on Scheme
Theory:	Th:	Theory	CIA:
Practical: 2 hrs/week	Practical: 01	Theory	End-Sem:
Prerequisite : Nil		Pract:	25
		Oral:	
		Termwork	
Course Objectives:			
1. To understand requirement	ents of industrial drawings		
2. To read, understand and	explain basic Geometric Dimensioning & T	olerancing cond	cepts
3. To apply various geomet	tric and dimension tolerances based on type	of fit	
4. To include surface rough	nness symbols based on manufacturing proc	ess	
5. To measure and verify p	osition tolerances with applied material con	ditions	
6. To understand requireme	ents for manufacturing and assembly.		
Course Outcomes:			
On completion of the cours	se, learner will be able to–		
CO1: Select appropriate IS a	and ASME standards for drawing		
CO2: Read & Analyze varie	ety of industrial drawings		
CO3: Apply geometric and	dimensional tolerance, surface finish symbo	ols in drawing	
CO4: Evaluate dimensional	tolerance based on type of fit, etc.		
	manufacturing process using DFM, DFA, et		

Sem-IV

VAC122: Geometric Dimensioning & Tolerancing (GD&T)

Guidelines for Laboratory	Conduction
----------------------------------	------------

The student shall complete the following activity as a practical work.	
• Total 8 Practical Assignments from the following list must be performed.	
• Term Work of the Student is evaluated based on the completion of Practical, Industrial	
Visit Report and Group Assignment.	
• Practical (Assignment # 1 to 6 & 10 are compulsory; Select any One from Assignment #	CO
7 to 9)	
• The student shall complete the following Practical in laboratory. Learner will demonstrate	
skills to communicate drawings as per industry standards:	
1. Study of drawing sheet layout, Principles of Drawing and various IS Standards &	
Conventions in Machine Drawing, Dimensioning practices - Terminology & Basic Rules,	
Styles, Conventions	
2. GD&T	
i. Terminology, Maximum and Minimum Material conditions, Features, Rules for	
GD&T, Datum Control.	
ii. Adding GD&T to a Design, Form Tolerances.	CO1/
iii. Orientation Tolerances, Profile Tolerances.	CO1/
iv. Location Tolerances, Run out Tolerances.	CO2/
3. Surface finish, Welding symbols	CO4/
4. Study and reading of Industrial Drawings to understand standard industrial practices viz.	CO4/
Dimensioning, GD&T, and Surface finish, welding symbols, etc.	003
i. Machine Drawing.	
ii. Production Drawing.	
iii. Part Drawing.	
iv. Assembly Drawing: (i) Assembly Drawing for Design, (ii) Assembly Drawing for	
Instruction Manuals, (iii) Exploded Assembly Drawing, (iv) Schematic Assembly	
Drawing, (v) Patent Drawing, etc	

VAC122: Geometric Dimensioning & Tolerancing (GD&T)

- 5. Calculation of Tolerances based on Type of Fits in Assembly.
- 6. Tolerance Stacks-Up with suitable examples.
- 7. Design for Manufacturing (DFM) with suitable examples
- 8. Design for Assembly and Dis-assembly with suitable examples.
- 9. Design for Safety with suitable examples.
- 10. Industrial visit / Case study

Text Books

- 1. Standards: ASME Y14.5 2018
- Narayana, K. L., Kannaiah, P., Venkata Reddy, K., (2016), "Machine Drawing", 2nd edition, New Age International Publishers, New Delhi, India, ISBN-13: 978-8122440546
- Bhatt, N. D. and Panchal, V. M., (2014), "Machine Drawing", Charotar Publishing House Pvt. Ltd, Anand, India, ISBN-13: 978-9385039232.

Reference Books

- Cogorno, G. R., (2020), "Geometric Dimensioning and Tolerancing for Mechanical Design", 3rd edition, McGraw-Hill Education
- Blokdyk, Gerardus, (2019), "Geometric Dimensioning and Tolerancing: A Complete Guide -2020 Edition", 5STARCooks
- 3. Standards: ISO/TR 23605:2018, ISO 1101:2017, SP 46, IS 15054(2001)

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech (Common) (2023 Pattern)

Sem-IV

Minor Project (Exit Course)

Teaching Scheme:	Credits	Examinati	Examination Scheme	
Theory:	Practical:02	Theory	CIA:	
Practical:		Theory	End-Sem:	
		Pract:	50	
		Oral:		
		Termwork		

Course Objectives: The student should be able to

1. develop ability for the application of fundamental principles and elementary techniques which have been learnt, in developing solutions for real life engineering problems.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Identify an open ended problem in area of engineering.

CO2: Identify the methods and materials required for the project work.

CO3: Formulate and implement innovative ideas for social and environmental benefits.

CO4: Analyze the results to come out with concrete solutions.

CO5: Write technical report of the project apart from developing a presentation.

SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE S.Y. B. Tech (Common) (2023 Pattern) Sem-IV

Minor Project (Exit Course)

PROCEDURE

This subject will be offered to the students who are will to exit second year engineering and opt for UG Diploma after the 4th semester.

Minor Project is an exit course requirement wherein under the guidance of a faculty member, a student is required to do an innovative work with application of knowledge earned while undergoing various courses and laboratories in the course of study.

Minor Project envisages that a student will acquire the ability to use a wide range of the skills learned during their course of study. A student is required to carry out the project work related to Engineering, under the guidance of a faculty member and/or the supervisor of the concerned industry/institute/organization.

The individual student has to undertake the project.

Duration: Minor Project to be completed within one month duration for the respective semester/Exit Course. It is to be assessed and evaluated at the end of 4^{th} semester.